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PREFACE TO THE EIGHTH EDITION 
 

“No single tool has contributed more to the progress of 

modern physics than the diffraction grating …”1 
 

 MKS Instruments is proud to build upon the heritage of technical 

excellence that began when Bausch & Lomb established what became the 

Richardson Grating Laboratory and produced its first high-quality master 

grating in the late 1940s.  A high-fidelity replication process was 

subsequently developed to make duplicates of the tediously generated 

master gratings.  This replication process became the key to converting 

diffraction gratings from academic curiosities to commercially-available 

optical components, which in turn enabled gratings to supplant prisms as 

the optical dispersing element of choice in modern laboratory 

instrumentation. The advantage of replica gratings lies not only in their 

greater availability and lower cost, but in making possible the provision of 

exact duplicates whenever needed. 

 Since its introduction in 1970, the Diffraction Grating Handbook has 

been a primary source of information of a general nature regarding 

diffraction gratings.  In 1982, Dr. Michael Hutley of the National Physical 

Laboratory published Diffraction Gratings, a monograph that addresses 

in more detail the nature and uses of gratings, as well as their 

manufacture.  In 1997, Dr. Erwin Loewen, the emeritus director of the 

Bausch & Lomb grating laboratory who wrote the original Handbook, 

wrote with Dr. Evgeny Popov (now with the Laboratoire d’Optique 

Électromagnétique) a very thorough and complete monograph entitled 

Diffraction Gratings and Applications.  Readers of this Handbook who 

seek additional insight into the many aspects of diffraction grating 

behavior, manufacture and use are encouraged to turn to these two 

excellent books. 

 Christopher Palmer 

 Rochester, New York, USA 

 March 2020 
 

 chris.palmer@mksinst.com 

                                                             
1 G. R. Harrison, “The production of diffraction gratings. I. Development of the ruling art,” 
J. Opt. Soc. Am. 39, 413-426 (1949). 
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1. SPECTROSCOPY AND GRATINGS      
 

“It is difficult to point to another single device that has brought 

more important experimental information to every field of 

science than the diffraction grating.  The physicist, the 

astronomer, the chemist, the biologist, the metallurgist, all use it 

as a routine tool of unsurpassed accuracy and precision, as a 

detector of atomic species to determine the characteristics of 

heavenly bodies and the presence of atmospheres in the planets, 

to study the structures of molecules and atoms, and to obtain a 

thousand and one items of information without which modern 

science would be greatly handicapped.” 

 

  J. Strong, “The Johns Hopkins University and diffraction gratings,” J. Opt. 

Soc. Am. 50, 1148-1152 (1960), quoting G. R. Harrison. 

1.0. INTRODUCTION 

 Optical spectroscopy is the study of electromagnetic spectra – the 

wavelength composition of light – due to atomic and molecular 

interactions.   For many years, spectroscopy has been important in the 

study of physics, and it is now equally important in astronomical, 

biological, chemical, metallurgical and other analytical investigations.  

The first experimental tests of quantum mechanics involved verifying 

predictions regarding the spectrum of hydrogen with grating spectrome-

ters.  In astrophysics, diffraction gratings provide clues to the composi-

tion of and processes in stars and planetary atmospheres, as well as offer 

clues to the large-scale motions of objects in the universe.  In chemistry, 

toxicology and forensic science, grating-based instruments are used to 

determine the presence and concentration of chemical species in 

samples.  In telecommunications, gratings are being used to increase the 

capacity of fiber-optic networks using wavelength division multiplexing 

(WDM).  Gratings have also found many uses in tuning and spectrally 

shaping laser light, as well as in chirped pulse amplification applications. 

 The diffraction grating is of considerable importance in spectroscopy, 

due to its ability to separate (disperse) polychromatic light into its 

constituent monochromatic components.  In recent years, the spectro-

scopic quality of diffraction gratings has greatly improved, and 

Richardson Gratings has been a leader in this development. 
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 The extremely high accuracy required of a modern diffraction grating 

dictates that the mechanical dimensions of diamond tools, ruling engines, 

and optical recording hardware, as well as their environmental condi-

tions, be controlled to the very limit of that which is physically possible.  

A lower degree of accuracy results in gratings that are ornamental but 

have little technical or scientific value.  The challenge to produce 

precision diffraction gratings has attracted the attention of some of the 

world's most capable scientists and technicians.  Only a few have met 

with any appreciable degree of success, each limited by the technology 

available. 

1.1. THE DIFFRACTION GRATING 

 A diffraction grating is a collection of reflecting (or transmitting) 

elements separated by a distance comparable to the wavelength of light 

under study.  It may be thought of as a collection of diffracting elements, 

such as a pattern of transparent slits (or apertures) in an opaque screen, 

or a collection of reflecting grooves on a substrate.  In either case, the 

fundamental physical characteristic of a diffraction grating is the spatial 

modulation of the refractive index.  Upon diffraction, an electromagnetic 

wave incident on a grating will have its electric field amplitude, or phase, 

or both, modified in a predictable manner, due to the (often but not 

always periodic) variation in refractive index in the region near the 

surface of the grating.2  Diffraction from or through a grating generates 

one or more discrete sets of diffracted waves, created via constructive 

interference. 

 A reflection grating consists of a grating superimposed on a 

reflective surface, whereas a transmission grating consists of a grating 

superimposed on a transparent surface.   

 A master grating (also called an original grating) is a grating whose 

surface-relief pattern is created “from scratch”, either by mechanical 

ruling (see Chapter 3) or holographic recording (see Chapter 4).  A 

replica grating is one whose surface-relief pattern is generated by casting 

or molding the relief pattern of another grating (see Chapter 5). 

                                                             
2 M. Born and E. Wolf, Principles of Optics, 7th expanded ed., Cambridge University Press 
(Cambridge, England: 1999). 
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1.2. A BRIEF HISTORY OF GRATING DEVELOPMENT 

 The first diffraction grating was made by an American astronomer, 

David Rittenhouse, in 1785, who reported constructing a half-inch wide 

grating with fifty-three apertures.3  He did not develop this prototype 

further, and there is no evidence that he tried to use it for serious 

scientific experiments. 

 In 1821, most likely unaware of Rittenhouse’s work, Joseph von 

Fraunhofer began his work on diffraction gratings,4  who saw the value 

that grating dispersion could have for the new science of spectroscopy.  

Fraunhofer's persistence resulted in gratings of sufficient quality to 

enable him to measure the absorption lines of the solar spectrum, now 

generally referred to as Fraunhofer lines.  He also derived the equations 

that govern the dispersive behavior of gratings.  Fraunhofer was in-

terested only in making gratings for his own experiments, and upon his 

death his equipment disappeared. 

 By 1850, F.A. Nobert, a Prussian instrument maker, began to supply 

scientists with gratings superior to Fraunhofer's.  About 1870, the scene 

of grating development returned to America, where L.M. Rutherfurd, a 

New York lawyer with an avid interest in astronomy, became interested in 

gratings.  In just a few years, Rutherfurd learned to rule reflection 

gratings in speculum metal that were far superior to any that Nobert had 

made.  Rutherfurd developed gratings that surpassed even the most 

powerful prisms.  He made very few gratings, though, and their uses were 

limited. 

 Rutherfurd's part-time dedication, impressive as it was, could not 

match the tremendous strides made by H.A. Rowland, professor of 

physics at the Johns Hopkins University.  Rowland's 1882 work 

established the grating as the primary optical element of spectroscopic 

technology.5  Rowland constructed sophisticated ruling engines and 

                                                             
3 D. Rittenhouse, “Explanation of an optical deception,” Trans. Amer. Phil. Soc. 2, 37-42 
(1786); “An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse”, 
Trans. Amer. Phil. Soc. 2, 201-206 (1786). 

4 J. Fraunhofer, “Kurzer Bericht von den Resultaten neuerer Versuche über die Gesetze des 
Lichtes, und die Theorie derselben,” Ann. D. Phys. 74, 337-378 (1823). 

5 H. A. Rowland, “Preliminary notice of results accomplished on the manufacture and 
theory of gratings for optical purposes,” Phil. Mag. Suppl. 13, 469-474 (1882); H. A. 
Rowland, “On Mr. Glazebrook's Paper on the aberration of concave gratings”, Philos. Mag. 
16, 210 (1883); G. R. Harrison and E. G. Loewen, “Ruled gratings and wavelength tables,” 
Appl. Opt. 15, 1744-1747 (1976). 
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invented the concave grating, a device of spectacular value to modern 

spectroscopists.  He continued to rule gratings until his death in 1901. 

 After Rowland's great success, many people set out to rule diffraction 

gratings.  The few who were successful sharpened the scientific demand 

for gratings.  As the advantages of gratings over prisms and inter-

ferometers for spectroscopic work became more apparent, the demand 

for diffraction gratings far exceeded the supply. 

1.3. HISTORY OF RICHARDSON GRATINGS  

 In 1947, the Bausch & Lomb Optical Company decided to make 

precision gratings available commercially.  In 1950, through the encour-

agement of Prof. George R. Harrison of MIT, David Richardson and 

Robert Wiley of Bausch & Lomb succeeded in producing their first high-

quality ruled master grating.  This grating was ruled on a rebuilt engine 

that had its origins in the University of Chicago laboratory of Prof. Albert 

A. Michelson, the first American to be awarded a Nobel Prize in Physics 

(in 1907) for “his optical precision instruments and the spectroscopic and 

metrological investigations carried out with their aid.”6  A high-fidelity 

replication process was subsequently developed, which was crucial to 

making replicas, duplicates of the painstakingly-ruled master gratings.   

 Over four decades, Bausch & Lomb created hundreds of unique 

master gratings, covering of very wide range of sizes, groove spacings and 

groove profiles.  In particular, the control of groove shape (or blazing) has 

increased spectral efficiency dramatically since the early days of grating 

manufacture.  Interferometric and servo control systems made it possible 

to break through the accuracy barrier previously set by the mechanical 

constraints inherent in the ruling engines.7 

 In 1985, Milton Roy Company acquired Bausch & Lomb's gratings 

and spectrometer operations, which it sold in 1995 to Life Sciences 

International plc as part of Spectronic Instruments, Inc.  At this time, the 

gratings operations took the name Richardson Grating Laboratory.  In 

1997, Spectronic Instruments was acquired by Thermo Electron 

Corporation (now Thermo Fisher Scientific), and a few years later the 

gratings operation was renamed Thermo RGL for a time before being 

                                                             
6 “The Nobel Prize in Physics 1907,” nobelprize.org. 

7 G. R. Harrison and G. W. Stroke, “Interferometric control of grating ruling with 
continuous carriage advance,” J. Opt. Soc. Am. 45, 112-121 (1955). 
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transferred to Thermo Electron’s subsidiary, Spectra-Physics. In 2004, 

Spectra-Physics was acquired by Newport Corporation. 

 Newport was acquired by MKS Instruments, Inc., a global provider of 

instruments, subsystems and process control solutions that measure, 

monitor, deliver, analyze, power and control critical parameters of 

advanced manufacturing processes to improve process performance and 

productivity.  MKS’ products are derived from its core competencies in 

pressure measurement and control, flow measurement and control, gas 

and vapor delivery, gas composition analysis, residual gas analysis, leak 

detection, control technology, ozone generation and delivery, power, 

reactive gas generation, vacuum technology, lasers, photonics, sub-

micron positioning, vibration control, optics, and laser-based 

manufacturing solutions.  MKS also provide services relating to the 

maintenance and repair of our products, installation services and 

training.  Its primary served markets include semiconductor, industrial 

technologies, life and health sciences, research and defense. 

 During these changes, Richardson Gratings has continued to uphold 

the traditions of precision and quality established by Bausch & Lomb over 

seventy years ago. 

1.4. DIFFRACTION GRATINGS FROM RICHARDSON 

GRATINGS  

 MKS’ Richardson Gratings occupies two manufacturing facilities in 

Rochester, New York, USA.  These facilities contain the ruling engines 

and the holographic recording chambers, which are used for making 

master gratings, as well as the replication and associated testing and 

inspection facilities for manufacturing replicated gratings in commercial 

quantities.  In order to reduce risk, we qualify the manufacture and 

testing of the gratings we produce for our OEM (original equipment 

manufacturer) customers in both facilities. 

 To achieve the high spectral resolution characteristic of high-quality 

gratings, a precision of better than 1 nm in the spacing of the grooves 

must be maintained.  For ruled gratings, such high precision requires 

extraordinary control over temperature fluctuation and vibration in the 

ruling engine environments.  This control has been established by the 

construction of specially-designed ruling cells that provide environments 

in which temperature stability is maintained at ± 0.01 °C for weeks at a 

time, as well as vibration isolation that suppresses ruling engine 

displacement to less than 0.025 µm.  The ruling cells can maintain 



 

18 

 

reliable control over the important environmental factors for periods of 

several weeks, the time required to rule large, finely-spaced gratings. 

 In addition to burnishing gratings with a diamond tool, an optical 

interference pattern can be used to produce holographic gratings.   The 

creation of master holographic gratings requires a very high degree of 

stability of the recording optical system to obtain the best contrast and 

fringe structure, which in turn provides the correct groove pattern and 

groove profile.  MKS produces holographic gratings in its dedicated 

recording facilities, in whose controlled environment thermal gradients 

and air currents are minimized and fine particulates are filtered from the 

air.   These master holographic gratings are replicated in a process 

identical to that for ruled master gratings. 
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22..  THE PROPERTIES OF DIFFRACTION 

GRATINGS     
2.1. THE GRATING EQUATION 

 When monochromatic light is incident on a grating surface, it is 

diffracted into discrete directions.  We can picture each grating groove as 

being a very small, slit-shaped source of diffracted light.  The light 

diffracted by each groove combines to form a set of diffracted wavefronts.  

The usefulness of a grating depends on the fact that there exists a unique 

set of discrete angles along which, for a given spacing d between grooves, 

the diffracted light from each facet is in phase with the light diffracted 

from any other facet, leading to constructive interference. 

 Diffraction by a grating can be visualized from the geometry in Figure 

2-1, which shows a light ray of wavelength  incident at an angle  and 

diffracted by a grating (of groove spacing d, also called the pitch) along 

at set of angles {m}.  These angles are measured from the grating 

normal, which is shown as the dashed line perpendicular to the grating 

surface at its center.  The sign convention for these angles depends on 

whether the light is diffracted on the same side or the opposite side of the 

grating as the incident light.  In diagram (a), which shows a reflection 

grating, the angles  > 0 and 1 > 0 (since they are measured counter-

clockwise from the grating normal) while the angles 0 < 0 and –1 < 0 

(since they are measured clockwise from the grating normal).  Diagram 

(b) shows the case for a transmission grating.  In both cases, the sign 

conventions are such that, for the m = 0 order, 0 = –. 

 By convention, angles of incidence and diffraction are measured from 

the grating normal to the beam.  This is shown by arrows in the diagrams.  

In both diagrams, the sign convention for angles is shown by the plus and 

minus symbols located on either side of the grating normal.  For either 

reflection or transmission gratings, the algebraic signs of two angles dif-

fer if they are measured from opposite sides of the grating normal.  Other 

sign conventions exist, so care must be taken in calculations to ensure 

that results are self-consistent.   

 Another illustration of grating diffraction, using wavefronts (surfaces 

of constant phase), is shown in Figure 2-2.  The geometrical path dif-

ference between light from adjacent grooves is seen to be d sin + d sin.   
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Figure 2-1.  Diffraction by a plane grating. A beam of monochromatic light of wavelength 

 is incident on a grating and diffracted along several discrete paths.  The triangular 

grooves come out of the page; the rays lie in the plane of the page.  The sign convention for 

the angles  and  is shown by the + and – signs on either side of the grating normal.  (a) A 

reflection grating: the incident and diffracted rays lie on the same side of the grating.  (b) A 

transmission grating: the diffracted rays lie on the opposite side of the grating from the 

incident ray. 
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[Since  < 0, the term d sin is negative.]  The principle of constructive 

interference dictates that only when this difference equals the 

wavelength of the light, or some integral multiple thereof, will the light 

from adjacent grooves be in phase (leading to constructive interference).  

At all other angles, the Huygens wavelets originating from the groove 

facets will interfere destructively. 

 

 

Figure 2-2.  Geometry of diffraction, showing planar wavefronts.  Two parallel rays, 

labeled 1 and 2, are incident on the grating one groove spacing d apart and are in phase 

with each other at wavefront A.  Upon diffraction, the principle of constructive interference 

implies that these rays are in phase at diffracted wavefront B if the difference in their path 

lengths, dsin + dsin, is an integral number of wavelengths; this in turn leads to the 

grating equation.  [Huygens wavelets not shown.]  

 These relationships are expressed by the grating equation 

  m= d (sin + sin), (2-1) 

which governs the angular locations of the principal intensity maxima 

when light of wavelength  is diffracted from a grating of groove spacing 

d.  Here m is the diffraction order (or spectral order),which is an integer.  

For a particular wavelength , all values of m for which |m/d| < 2 

correspond to propagating (rather than evanescent) diffraction orders.  

The special case m = 0 leads to the law of reflection  = –. 

 It is sometimes convenient to write the grating equation as 

  Gm= sin + sin, (2-2) 
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where G = 1/d is the groove frequency or groove density, more com-

monly called "grooves per millimeter".  

 Eq. (2-1) and its equivalent Eq. (2-2) are the common forms of the 

grating equation, but their validity is restricted to cases in which the 

incident and diffracted rays lie in a plane which is perpendicular to the 

grooves (at the center of the grating).  Most grating systems fall within 

this category, which is called classical (or in-plane) diffraction.  If the 

incident light beam is not perpendicular to the grooves, though, the 

grating equation must be modified: 

  Gm= cos (sin + sin). (2-3) 

Here  is the angle between the incident light path and the plane 

perpendicular to the grooves at the grating center (the plane of the page 

in Figure 2-2).  If the incident light lies in this plane,  = 0 and Eq. (2-3) 

reduces to the more familiar Eq. (2-2).  In geometries for which  ≠ 0, the 

diffracted spectra lie on a cone rather than in a plane, so such cases are 

termed conical diffraction. 

 For a grating of groove spacing d, there is a purely mathematical 

relationship between the wavelength and the angles of incidence and 

diffraction.  In a given spectral order m, the different wavelengths of 

polychromatic wavefronts incident at angle  are separated in angle: 

  = 







 


sinsin 1

d

m
. (2-4) 

When m = 0, the grating acts as a mirror, and the wavelengths are not 

separated ( = – for all ); this is called specular reflection or simply the 

zero order. 

 A special but common case is that in which the light is diffracted back 

toward the direction from which it came (i.e.,  = ); this is called the 

Littrow configuration, for which the grating equation becomes 

  m= 2d sin,        in Littrow. (2-5) 

 In many applications a constant-deviation monochromator mount is 

used, in which the wavelength  is changed by rotating the grating about 

the axis coincident with its central ruling, with the directions of incident 

and diffracted light remaining unchanged.  The deviation angle 2K 

between the incidence and diffraction directions (also called the angular 

deviation) is 

  2K=  – = constant, (2-6) 
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while the scan angle , which varies with  and is measured from the 

grating normal to the bisector of the beams, is 

  2=  + . (2-7) 

Note that  changes with  (as do  and ).  In this case, the grating 

equation can be expressed in terms of  and the half deviation angle K as 

  m= 2d cosK sin. (2-8) 

Here K is called the half deviation angle because the angle between the 

incident and diffracted beams is 2K.  This version of the grating equation 

is useful for monochromator mounts (see Chapter 7).  Eq. (2-8) shows 

that the wavelength diffracted by a grating in a monochromator mount is 

directly proportional to the sine of the scan angle  through which the 

grating rotates, which is the basis for monochromator drives in which a 

sine bar rotates the grating to scan wavelengths (see Figure 2-3). 

  

 

Figure 2-3.  A sine bar mechanism for wavelength scanning.  As the screw is extended 

linearly by the distance x shown, the grating rotates through an angle  in such a way that 

sin is proportional to x. 

 For the constant-deviation monochromator mount, the incidence and 

diffraction angles can be expressed simply in terms of the scan angle  

and the half-deviation angle K via 

  =  + K (2-9) 

and 

  =  – K, (2-10) 

where we show explicitly that , and  depend on the wavelength . 
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2.2. DIFFRACTION ORDERS 

 Generally, several integers m will satisfy the grating equation – we 

call each of these values a diffraction order. 

2.2.1. Existence of diffraction orders 

 For a particular groove spacing d, wavelength  and incidence angle 

, the grating equation (2-1) is generally satisfied by more than one 

diffraction angle.  In fact, subject to restrictions discussed below, there 

will be several discrete angles at which the condition for constructive 

interference is satisfied.  The physical significance of this is that the 

constructive reinforcement of wavelets diffracted by successive grooves 

merely requires that each ray be retarded (or advanced) in phase with 

every other; this phase difference must therefore correspond to a real 

distance (path difference) which equals an integral multiple of the 

wavelength.  This happens, for example, when the path difference is one 

wavelength, in which case we speak of the positive first diffraction order 

(m = 1) or the negative first diffraction order (m = –1), depending on 

whether the rays are advanced or retarded as we move from groove to 

groove. Similarly, the second order (m = 2) and negative second order (m 

= –2) are those for which the path difference between rays diffracted 

from adjacent grooves equals two wavelengths. 

 The grating equation reveals that only those spectral orders for which 

|m/d| < 2 can exist; otherwise, |sin + sin| > 2, which is physically 

meaningless.  This restriction prevents light of wavelength  from being 

diffracted in more than a finite number of orders.  Specular reflection, for 

which m = 0, is always possible; that is, the zero order always exists (it 

simply requires  = –).   In most cases, the grating equation allows light 

of wavelength  to be diffracted into both negative and positive orders as 

well.  Explicitly, spectra of all orders m exist for which 

  –2d < m < 2d,       m an integer. (2-11) 

 For /d << 1, a large number of diffracted orders will exist. 

 As seen from Eq. (2-1), the distinction between negative and positive 

spectral orders is that 

 > –    for positive orders (m > 0), 

   < –     for negative orders (m < 0), and (2-12) 

   = –     for specular reflection (m = 0). 
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This sign convention requires that m > 0 if the diffracted ray lies to the 

left (the counter-clockwise side) of the zero order (m = 0), and m < 0 if 

the diffracted ray lies to the right (the clockwise side) of the zero order.  

This convention is shown graphically in Figure 2-4. 

 

 

Figure 2-4.  Sign convention for the spectral order m.  In this example  is positive. 

2.2.2. Overlapping of diffracted spectra 

 The most troublesome aspect of multiple order behavior is that suc-

cessive spectra overlap, as shown in Figure 2-5.  It is evident from the 

grating equation that light of wavelength  diffracted by a grating along 

direction  will be accompanied by integral fractions /2, /3, etc.; that 

is, for any grating instrument configuration, the light of wavelength  

diffracted in the m = 1 order will coincide with the light of wavelength /2 

diffracted in the m = 2 order, etc.  In this example, the red light (600 nm) 

in the first spectral order will overlap the ultraviolet light (300 nm) in the 

second order.  A detector sensitive at both wavelengths would see both 

simultaneously.  This superposition of wavelengths, which would lead to 

ambiguous spectroscopic data, is inherent in the grating equation itself 

and must be prevented by suitable filtering (called order sorting), since 

the detector cannot generally distinguish between light of different 

wavelengths incident on it (within its range of sensitivity).  [See also 

Section 2.7 below.] 
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Figure 2-5. Overlapping of spectral orders.  The light for wavelengths 100, 200 and 300 

nm in the 2nd order is diffracted in the same direction as the light for wavelengths 200, 400 

and 600 nm in the 1st order.  In this diagram, light is incident from the right, so  < 0. 

2.3. DISPERSION 

 The primary purpose of a diffraction grating is to disperse light 

spatially by wavelength.  A beam of white light incident on a grating will 

be separated into its component wavelengths upon diffraction from the 

grating, with each wavelength diffracted along a different direction.  

Dispersion is a measure of the separation (either angular or spatial) 

between diffracted light of different wavelengths.  Angular dispersion 

expresses the spectral range per unit angle, and linear resolution ex-

presses the spectral range per unit length. 

2.3.1. Angular dispersion 

 The angular spread  of a spectrum of order m between the 

wavelength  and  +  can be obtained by differentiating the grating 

equation, assuming the incidence angle  to be constant.  The change D in 

diffraction angle per unit wavelength is therefore 

  D = 



sec

cosd

d

d

m

d

m
  = Gm sec, (2-13) 

where  is given by Eq. (2-4).  The quantity D is called the angular 

dispersion.  As the groove frequency G = 1/d increases, the angular 
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dispersion increases (meaning that the angular separation between wave-

lengths increases for a given order m). 

 In Eq. (2-13), it is important to realize that the quantity m/d is not a 

ratio which may be chosen independently of other parameters; 

substitution of the grating equation into Eq. (2-13) yields the following 

general equation for the angular dispersion: 

  D = 








cos

sinsin

d

d 
 . (2-14) 

For a given wavelength, this shows that the angular dispersion may be 

considered to be solely a function of the angles of incidence and 

diffraction.  This becomes even more clear when we consider the Littrow 

configuration ( = ), in which case Eq. (2-14) reduces to 

  D = 



tan

2

d

d
 ,        in Littrow. (2-15) 

When || increases from 10° to 63° in Littrow use, the angular dispersion 

can be seen from Eq. (2-15) to increase by a factor of ten, regardless of the 

spectral order or wavelength under consideration.  Once the diffraction 

angle  has been determined, the choice must be made whether a fine-

pitch grating (small d) should be used in a low diffraction order, or a 

coarse-pitch grating (large d) such as an echelle grating (see Section 12.5) 

should be used in a high order.  [The fine-pitched grating, though, will 

provide a larger free spectral range; see Section 2.7 below.] 

2.3.2. Linear dispersion 

 For a given diffracted wavelength  in order m(which corresponds to 

an angle of diffraction ), the linear dispersion of a grating system is the 

product of the angular dispersion D and the effective focal length r'() of 

the system: 

  r' D =  r' 



sec

cosd

d

d

rm

d

rm 



   = Gmr' sec. (2-16) 

The quantity r' = l is the change in position along the spectrum (a 

real distance, rather than a wavelength).  We have written r'() for the 

focal length to show explicitly that it may depend on the diffraction angle 

 (which, in turn, depends on ). 

 The reciprocal linear dispersion, formerly called the plate factor P, 

is more often considered; it is simply the reciprocal of r' D, 
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  P= 
rm

d



cos
, (2-17) 

usually measured in nm/mm (where d is expressed in nm and r' is 

expressed in mm).  The quantity P is a measure of the change in 

wavelength (in nm) corresponding to a change in location along the 

spectrum (in mm).  [It should be noted that the terminology plate factor 

is used by some authors to represent the quantity 1/sin, where  is the 

angle the spectrum makes with the line perpendicular to the diffracted 

rays (see Figure 2-6); in order to avoid confusion, we call the quantity 

1/sin the obliquity factor.] When the image plane for a particular 

wavelength is not perpendicular to the diffracted rays (i.e., when  ≠ 

90°), P must be multiplied by the obliquity factor to obtain the correct 

reciprocal linear dispersion in the image plane. 

 

 

Figure 2-6.  The obliquity angle .  The spectral image recorded need not lie in the plane 

perpendicular to the diffracted ray (i.e.,  ≠ 90°). 

2.4. RESOLVING POWER, SPECTRAL RESOLUTION, AND 

SPECTRAL BANDPASS 

2.4.1. Resolving power 

 The resolving power R of a grating is a measure of its ability to sepa-

rate adjacent spectral lines of average wavelength .  It is usually 

expressed as the dimensionless quantity 

  R =





. (2-18) 

Here  is the limit of resolution, the difference in wavelength between 

two lines of equal intensity that can be distinguished (that is, the peaks of 

two wavelengths 1 and 2 for which the separation |1 – 2| <  will be 
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ambiguous).   Often the Rayleigh criterion is used to determine   – that 

is, the intensity maxima of two neighboring wavelengths are resolvable 

(i.e., identifiable as distinct spectral lines) if the intensity maximum of 

one wavelength coincides with the intensity minimum of the other 

wavelength.8 

 The theoretical resolving power of a planar diffraction grating is 

given in elementary optics textbooks as  

  R = mN, (2-19) 

where m is the diffraction order and N is the total number of grooves 

illuminated on the surface of the grating.  For negative orders (m < 0), 

the absolute value of R is considered. 

 A more meaningful expression for R is derived below.  The grating 

equation can be used to replace m in Eq. (2-19): 

  R = 
 



 sinsin Nd
. (2-20) 

If the groove spacing d is uniform over the surface of the grating, and if 

the grating substrate is planar, the quantity Nd is simply the ruled width 

W of the grating, so  

  R = 
 



 sinsin W
. (2-21) 

As expressed by Eq. (2-21), R is not dependent explicitly on the spectral 

order or the number of grooves; these parameters are contained within 

the ruled width and the angles of incidence and diffraction.  Since  

  | sin + sin| < 2 , (2-22) 

the maximum attainable resolving power is 

  RMAX = 


W2
, (2-23) 

regardless of the order m or number of grooves N under illumination.  

This maximum condition corresponds to the grazing Littrow 

configuration, i.e., || ≈ 90° (grazing incidence) and  ≈  (Littrow). 

 It is useful to consider the resolving power as being determined by 

the maximum phase retardation of the extreme rays diffracted from the 

                                                             
8 D. W. Ball, The Basics of Spectroscopy, SPIE Press (2001), ch. 8. 
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grating.9  Measuring the difference in optical path lengths between the 

rays diffracted from opposite sides of the grating provides the maximum 

phase retardation; dividing this quantity by the wavelength  of the 

diffracted light gives the resolving power R. 

 The degree to which the theoretical resolving power is attained 

depends not only on the angles  and , but also on the optical quality of 

the grating surface, the uniformity of the groove spacing, the quality of 

the associated optics in the system, and the width of the slits (or detector 

elements).  Any departure of the diffracted wavefront greater than /10 

from a plane (for a plane grating) or from a sphere (for a spherical 

grating) will result in a loss of resolving power due to aberrations at the 

image plane.  The grating groove spacing must be kept constant to within 

about one percent of the wavelength at which theoretical performance is 

desired.  Experimental details, such as slit width, air currents, and vibra-

tions can seriously interfere with obtaining optimal results. 

 The practical resolving power of a diffraction grating is limited by the 

spectral width of the spectral lines emitted by the source.  For this reason, 

systems with revolving powers greater than R = 500,000 are not usually 

required except for the study of spectral line shapes, Zeeman effects, and 

line shifts, and are not needed for separating individual spectral lines. 

 A convenient test of resolving power is to examine the isotopic 

structure of the mercury emission line at  = 546.1 nm (see Section 11.4).  

Another test for resolving power is to examine the line profile generated 

in a spectrograph or scanning spectrometer when a single mode laser is 

used as the light source.  The full width at half maximum intensity 

(FWHM) can be used as the criterion for .  Unfortunately, resolving 

power measurements are the convoluted result of all optical elements in 

the system, including the locations and dimensions of the entrance and 

exit slits and the auxiliary lenses and mirrors, as well as the quality of 

these elements.  Their effects on resolving power measurements are 

necessarily superimposed on those of the grating. 

2.4.2. Spectral resolution 

 While resolving power can be considered a characteristic of the 

grating and the angles at which it is used, the ability to resolve two 

wavelengths 1 and 2 = 1 +  generally depends not only on the 

                                                             
9 N. Abramson, “Principle of least wave change,” J. Opt. Soc. Am. A6, 627-629 (1989). 
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grating but on the dimensions and locations of the entrance and exit slits 

(or detector elements), the aberrations in the images, and the magnifi-

cation of the images.  The minimum wavelength difference  (also called 

the limit of resolution, spectral resolution or simply resolution) between 

two wavelengths that can be resolved unambiguously can be determined 

by convoluting the image of the entrance aperture (at the image plane) 

with the exit aperture (or detector element).  This measure of the ability 

of a grating system to resolve nearby wavelengths is arguably more 

relevant than is resolving power, since it considers the imaging effects of 

the system.  While resolving power is a dimensionless quantity, 

resolution has spectral units (usually nanometers). 

2.4.3. Spectral Bandpass 

 The (spectral) bandpass B of a spectroscopic system is the range of 

wavelengths of the light that passes through the exit slit (or falls onto a 

detector element).  It is often defined as the difference in wavelengths 

between the points of half-maximum intensity on either side of an 

intensity maximum.  Bandpass is a property of the spectroscopic system, 

not of the diffraction grating itself. 

 For a system in which the width of the image of the entrance slit is 

roughly equal to the width of the exit slit, an estimate for bandpass is the 

product of the exit slit width w' and the reciprocal linear dispersion P: 

  B ≈ w' P. (2-24) 

An instrument with smaller bandpass can resolve wavelengths that are 

closer together than an instrument with a larger bandpass.  The spectral 

bandpass of an instrument can be reduced by decreasing the width of the 

exit slit (down to a certain limit; see Chapter 8), but usually at the 

expense of decreasing light intensity as well. 

 See Section 8.3 for additional comments on instrumental bandpass. 

2.4.4. Resolving power vs. resolution 

 In the literature, the terms resolving power and resolution are some-

times interchanged.  While the word power has a very specific meaning 

(energy per unit time), the phrase resolving power does not involve 

power in this way; as suggested by Hutley, though, we may think of 

resolving power as “ability to resolve”.10 

                                                             
10 M. C. Hutley, Diffraction Gratings, Academic Press (New York, New York: 1982), p. 29.   
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 The comments above regarding resolving power and resolution 

pertain to planar classical gratings used in collimated light (plane waves).  

The situation is complicated for gratings on concave substrates or with 

groove patterns consisting of unequally spaced lines, which restrict the 

usefulness of the previously defined simple formulas, though they may 

still yield useful approximations.  Even in these cases, though, the 

concept of maximum retardation is still a useful measure of the resolving 

power, and the convolution of the image and the exit slit is still a useful 

measure of resolution. 

2.5. FOCAL LENGTH AND f /NUMBER  

 For gratings (or grating systems) that image as well as diffract light, 

or disperse light that is not collimated, a focal length may be defined.  If 

the beam diffracted from a grating of a given wavelength  and order m 

converges to a focus, then the distance between this focus and the grating 

center is the focal length r'().  [If the diffracted light is collimated, and 

then focused by a mirror or lens, the focal length is that of the refocusing 

mirror or lens and not the distance to the grating.]  If the diffracted light 

is diverging, the focal length may still be defined, although by convention 

we take it to be negative (indicating that there is a virtual image behind 

the grating).  Similarly, the incident light may diverge toward the grating 

(so we define the incidence or entrance slit distance r() > 0) or it may 

converge toward a focus behind the grating (for which r() < 0).  Usually 

gratings are used in configurations for which r does not depend on 

wavelength (though the focal length r' usually depends on ).  

 In Figure 2-7, a typical concave grating configuration is shown; the 

monochromatic incident light (of wavelength ) diverges from a point 

source at A and is diffracted toward B.  Points A and B are distances r and 

r', respectively, from the grating center O.  In this figure, both r and r' are 

positive. 

  Calling the width (or diameter) of the grating (in the dispersion 

plane) W allows the input and output ƒ/numbers (also called focal 

ratios) to be defined: 

  ƒ/noINPUT = 
W

r
,    ƒ/noOUTPUT =

 
W

r 
. (2-25) 

Usually the input ƒ/number is matched to the ƒ/number of the light cone 

leaving the entrance optics (e.g., an entrance slit or fiber) to use as much 

of the grating surface for diffraction as possible.  This increases the 
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amount of diffracted energy while not overfilling the grating (which 

would generally contribute to instrumental stray light; see Chapter 10). 

 

  

Figure 2-7.   Geometry for focal distances and focal ratios (ƒ/numbers).  GN is the grating 

normal (perpendicular to the grating at its center, O), W is the width of the grating (its 

dimension perpendicular to the groove direction, which is out of the page), and A and B are 

the source and image points, respectively. 

 For oblique (non-normal) incidence or diffraction, Eqs. (2-25) are of-

ten modified by replacing W with the projected width of the grating: 

  ƒ/noINPUT = 
cosW

r
 ,        ƒ/noOUTPUT = 

 




cosW

r 
 . (2-26) 

These equations account for the reduced width of the grating as seen by 

the entrance and exit slits; moving toward oblique angles (i.e., increasing 

|| or ||) decreases the projected width and therefore increases the 

ƒ/number. 

 The focal length is an important parameter in the design and 

specification of grating spectrometers, since it governs the overall size of 

the optical system (unless folding mirrors are used).  The ratio between 

the input and output focal lengths determines the projected width of the 

entrance slit that must be matched to the exit slit width or detector 

element size.  The ƒ/number is also important, as it is generally true that 

spectral aberrations decrease as ƒ/number increases.  Unfortunately, 

increasing the input ƒ/number results in the grating subtending a smaller 

solid angle as seen from the entrance slit; this will reduce the amount of 

light energy the grating collects and consequently reduce the intensity of 

the diffracted beams.  This trade-off prohibits the formulation of a simple 

rule for choosing the input and output ƒ/numbers, so sophisticated 
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design procedures have been developed to minimize aberrations while 

maximizing collected energy.  See Chapters 7 and 8 for a discussion of the 

imaging properties and Chapter 9 for a description of the efficiency 

characteristics of grating systems. 

2.6. ANAMORPHIC MAGNIFICATION  

 For a given wavelength , we may consider the ratio of the width of a 

collimated diffracted beam to that of a collimated incident beam to be a 

measure of the effective magnification of the grating (see Figure 2-8).  

From this figure we see that this ratio is 

  




cos

cos


a

b
. (2-27) 

Since  and  depend on  through the grating equation (2-1), this 

magnification will vary with wavelength.  The ratio b/a is called the 

anamorphic magnification; for a given wavelength , it depends only on 

the angular configuration in which the grating is used. 

 

 

Figure 2-8.   Anamorphic magnification.  The ratio b/a of the beam widths equals the 

anamorphic magnification; from the grating equation (2-1) we see that this ratio will not 

equal unity unless m = 0 (specular reflection) or  =  (the Littrow configuration). 

 The magnification of an object not located at infinity (so that the 

incident rays are not collimated) is discussed in Chapter 8. 
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2.7. FREE SPECTRAL RANGE  

 For a given set of incidence angle  and diffraction angle , the 

grating equation is satisfied for a different wavelength for each integral 

diffraction order m.  Thus, light of several wavelengths (each in a 

different order) will be diffracted along the same direction: light of 

wavelength  in order m is diffracted along the same direction as light of 

wavelength /2 in order 2m, etc. 

 The range of wavelengths in a given spectral order for which 

superposition of light from adjacent orders does not occur is called the 

free spectral range F .  It can be calculated directly from its definition: 

in order m, the wavelength of light that diffracts along the direction of  

in order m+1 is  + , where 

   +  = 
m

m 1
 , (2-28) 

from which 

  F  =  = 
m


. (2-29) 

The concept of free spectral range applies to all gratings capable of 

operation in more than one diffraction order, but it is particularly 

important in the case of echelles, because they operate in high orders 

with correspondingly short free spectral ranges. 

 Free spectral range and order sorting are intimately related, since 

grating systems with greater free spectral ranges may have less need for 

filters (or cross-dispersers) that absorb or diffract light from overlapping 

spectral orders.  This is one reason why first-order applications are 

widely popular. 

2.8. ENERGY DISTRIBUTION (GRATING EFFICIENCY) 

 The distribution of light energy of a given wavelength diffracted by a 

grating into the various spectral orders depends on many parameters: the 

power and polarization of the incident light, the angles of incidence and 

diffraction, the (complex) index of refraction of the materials at the 

surface of the grating, the groove spacing and the groove profile.  A 

complete treatment of grating efficiency requires the vector formulation 

of electromagnetic theory (i.e., Maxwell's equations) applied to 

corrugated surfaces, which has been studied in detail over the past few 
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decades.  While the theory does not yield conclusions easily, certain rules 

of thumb can be useful in making approximate predictions.   

 The simplest and most widely used rule of thumb regarding grating 

efficiency (for reflection gratings) is the blaze condition 

  m= 2dsin, (2-30) 

where  (often called the blaze angle of the grating) is the angle between 

the face of the groove and the plane of the grating (see Figure 2-9).   

When the blaze condition is satisfied, the incident and diffracted rays 

follow the law of reflection when viewed from the facet; that is, we have 

   –  =  – . (2-31) 

 

 

Figure 2-9.  Blaze condition.  The angles of incidence  and diffraction  are shown in 

relation to the facet angle  for the blaze condition.  GN is the grating normal and FN is 

the facet normal.  When the facet normal bisects the angle between the incident and 

diffracted rays, the blaze condition (Eq. (2-30)) is satisfied. 

Because of this relationship, it is often said that when a grating is used at 

the blaze condition, the facets act as tiny mirrors.  This is not strictly true; 

since the dimensions of the facet are often on the order of the wavelength 

itself, ray optics does not provide an adequate physical model.  

Nonetheless, this is a useful way to remember the conditions under which 

a grating can be used to enhance efficiency. 

 Eq. (2-30) generally leads to the highest efficiency when the following 

condition is also satisfied: 

  2K=  – = 0, (2-32) 
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where 2K was defined above as the angle between the incident and 

diffracted beams (see Eq. (2-6)).  Eqs. (2-30) and (2-32) collectively 

define the Littrow blaze condition.  When Eq. (2-32) is not satisfied (i.e., 

  and therefore the grating is not used in the Littrow configuration), 

efficiency is generally seen to decrease as one moves further off Littrow 

(i.e., as 2K increases). 

 For a given blaze angle , the Littrow blaze condition provides the 

blaze wavelength , the wavelength for which the efficiency is maximal 

when the grating is used in the Littrow configuration: 

  = 
m

d2
sin,    in Littrow. (2-33) 

Many grating catalogs specify the first-order Littrow blaze wavelength 

for each grating: 

  = 2d sin,    in Littrow (m = 1). (2-34) 

Unless a diffraction order is specified, quoted values of  are generally 

assumed to be for the first diffraction order, in Littrow. 

 The blaze wavelength  in order m will decrease as the off-Littrow 

angle –increases from zero, according to the relation 

  = 
m

d2
 sin cos(–). (2-35) 

 Computer programs are commercially available that accurately 

predict grating efficiency for a wide variety of groove profiles over wide 

spectral ranges. 

 The topic of grating efficiency is addressed more fully in Chapter 9. 

2.9. SCATTERED LIGHT AND STRAY LIGHT 

 All light that reaches the detector of a grating-based instrument from 

anywhere other than the grating, by any means other than diffraction as 

governed by Eq. (2-1), for any spectral order other than the primary 

diffraction order of use, is called instrumental stray light (or more 

commonly, simply stray light).  All components in an optical system 

contribute to stray light, as will any baffles, apertures, and partially 

reflecting surfaces.  Unwanted light originating from an illuminated 

grating itself is often called scattered lightor grating scatter. 
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 Instrumental stray light can introduce inaccuracies in the output of 

an absorption spectrometer used for chemical analysis.  These 

instruments usually employ a “white light” (broad spectrum) light source 

and a monochromator to isolate a narrow spectral range from the white 

light spectrum; however, some of the light at other wavelengths will 

generally reach the detector, which will tend to make an absorbance 

reading too low (i.e., the sample will seem to be slightly more 

transmissive than it would in the absence of stray light).  In most 

commercial benchtop spectrometers, such errors are on the order of 0.1 

to 1 percent (and can be much lower with proper instrument design) but 

in certain circumstances (e.g., in Raman spectroscopy), instrumental 

stray light can lead to significant errors.  Grating scatter and instrumental 

stray light are addressed in more detail in Chapter 10. 

2.10. SIGNAL-TO-NOISE RATIO (SNR) 

 The signal-to-noise ratio (SNR) is the ratio of diffracted energy to 

unwanted light energy.  While we might be tempted to conclude that in-

creasing diffraction efficiency will increase SNR, stray light usually plays 

the limiting role in the achievable SNR for a grating system. 

 Instruments using replicated gratings from ruled master gratings can 

have quite high SNRs.  Instruments using holographic gratings 

sometimes have even higher SNRs, since they have no ghosts† due to 

periodic errors in groove location and lower interorder stray light.  

Improvements in master ruling technology and coatings has improved 

the quality of replicated grating from ruled masters so that they may now 

be used in applications requiring extremely high SNRs, such as Raman 

spectroscopy. 

 As SNR is a property of the optical instrument, not of the grating 

only, there exist no clear rules of thumb regarding what type of grating 

will provide higher SNR.  See Chapter 12 for a discussion of the sources of 

unwanted optical energy at the detector in a grating system. 

 

 

                                                             

 This statement ignores electrical and other non-optical contributions to the noise in the 
instrument. 

† Ghosts are false spectral lines due to irregularities in the groove pattern; see Chapter 11 
for more detail. 
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33..  RULED GRATINGS     
3.0. INTRODUCTION 

 The first diffraction gratings made for commercial use were 

mechanically ruled, manufactured by burnishing grooves individually 

with a diamond tool against a thin coating of evaporated metal applied to 

a plane or concave surface.  Replicas of such ruled gratings are used in 

many types of lasers, spectroscopic instrumentation and fiber-optic 

telecommunications equipment. 

3.1. RULING ENGINES 

 The most vital component in the production of ruled diffraction grat-

ings is the apparatus, called a ruling engine, on which master gratings are 

ruled.  MKS has four ruling engines in operation, each producing a 

substantial number of high-quality master gratings every year.  Each of 

these engines produces gratings with very low Rowland ghosts, high 

resolving power, and high efficiency uniformity. 

 Selected diamonds, whose crystal axis is oriented for optimum 

behavior, are used to shape the grating grooves.  The ruling diamonds are 

carefully shaped by skilled diamond toolmakers to produce the exact 

groove profile required for each grating.  The carriage that moves the 

diamond back and forth during ruling must maintain its position to 

better than a few nanometers for ruling times that may last from one day 

to several weeks. 

 The mechanisms for advancing the grating carriages on all MKS 

ruling are designed to make it possible to rule gratings with a wide choice 

of groove frequencies.  The Diffraction Grating Catalog published by 

MKS the range of groove frequencies available. 

3.1.1. The Michelson engine 

 In 1947 Bausch & Lomb acquired its first ruling engine from the 

University of Chicago; this engine was originally designed by Michelson 

in the 1910s and rebuilt by Gale.  It underwent further refinement, which 

greatly improved its performance, and has produced a continuous supply 

of high-quality gratings of up to 200 x 250 mm ruled area. 

 The Michelson engine originally used an interferometer system to 

plot the error curve of the lead screw, from which an appropriate me-
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chanical correction cam was derived.  In 1990, this system was 

superseded by the addition of a digital computer servo control system 

based on a laser interferometer.  The Michelson engine is unusual in that 

it covers the widest range of groove frequencies of any ruling engine: it 

can rule gratings as coarse as 32 grooves per millimeter (g/mm) and as 

fine as 5,400 g/mm. 

3.1.2. The Mann engine 

 The second ruling engine installed at MKS has been producing grat-

ings since 1953, was originally built by the David W. Mann Co. of Lincoln, 

Massachusetts.  Bausch & Lomb equipped it with an interferometric 

control system following the technique of Harrison of MIT.11  The Mann 

engine can rule areas up to 110 x 110 mm, with virtually no detectable 

ghosts and nearly theoretical resolving power. 

 While the lead screws of the ruling engines are lapped to the highest 

precision attainable, there are always residual errors in both threads and 

bearings that must be compensated to produce the highest quality 

gratings.  The Mann engine is equipped with an automatic interferometer 

servo system that continually adjusts the grating carriage to the correct 

position as each groove is ruled.  In effect, the servo system simulates a 

perfect screw. 

3.1.3. The MIT 'B' engine 

 The third ruling engine at MKS was built by Harrison and moved to 

Rochester in 1968.  It has the capacity to rule plane gratings to the 

greatest precision ever achieved; these gratings may be up to 420 mm 

wide, with grooves (between 20 and 1500 per millimeter) up to 320 mm 

long.  It uses a double interferometer control system, based on a 

frequency-stabilized laser, to monitor not only table position but to 

correct residual yaw errors as well.  This engine produces gratings with 

nearly theoretical resolving powers, virtually eliminating Rowland ghosts 

and minimizing stray light.  It has also ruled almost perfect echelle grat-

ings, the most demanding application of a ruling engine.  

                                                             
11 G. R. Harrison and J. E. Archer, “Interferometric calibration of precision screws and 
control of ruling engines,” J. Opt. Soc. Am. 41, 495 (1951);  G. R. Harrison and G. W. 
Stroke, “Interferometric control of grating ruling with continuous carriage advance,” J. Soc. 
Opt. Am. 45, 112 (1955);  G. R. Harrison, N. Sturgis, S. C. Baker and G. W. Stroke, “Ruling 
of large diffraction grating with interferometric control”, J. Opt. Soc. Am. 47, 15 (1957). 
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Figure 3-1.  MIT ‘B’ Engine.  This ruling engine, built by Professor George Harrison of the 

Massachusetts Institute of Technology and now in operation at MKS, is shown with its 

cover removed. 

3.1.4. The MIT 'C' engine 

 The fourth MKS ruling engine was also built by Harrison in the 1960s 

and transferred in the 1970s to the Association of Universities for 

Research in Astronomy (AURA) in Tucson, Arizona, where it was 

installed to support the Kitt Peak National Observatory.  At that time the 

original control system was upgraded to a solid-state system using 

integrated circuit technology.  In 1995 the engine was acquired by and 

moved to Richardson Gratings.  A laser-based control system was 

developed that uses two interferometers for translation and yaw 

correction.  The ‘C’ engine has a grating carriage travel of 813 mm and 

can rule gratings with a groove length of 460 mm; this engine has ruled 

gratings up to 400 mm x 600 mm with good wavefront and efficiency 

characteristics, comparable to those of  ‘B’ engine rulings.  
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3.2. THE RULING PROCESS 

 Master gratings are ruled on carefully selected well-annealed 

substrates of several different materials.  The choice is generally between 

BK-7 optical glass, special grades of fused silica, or a special grade of 

Schott ZERODUR®.  The optical surfaces of these substrates are polished 

to closer than /10 for green light (about 50 nm), then coated with a 

reflective film (usually aluminum or gold). 

 Compensating for changes in temperature and atmospheric pressure 

is especially important in the environment around a ruling engine.  Room 

temperature must be held constant to within 0.01 °C for small ruling 

engines (and to within 0.005 °C for larger engines).  Since the 

interferometric control of the ruling process uses monochromatic light, 

whose wavelength is sensitive to the changes of the refractive index of air 

with pressure fluctuations, atmospheric pressure must be compensated 

for by the system.  A change in pressure of 2.5 mm of mercury (300 Pa) 

results in a corresponding change in wavelength of one part per million.12  

This change is negligible if the optical path of the interferometer is near 

zero but becomes significant as the optical path increases during the 

ruling.  If this effect is not compensated, the carriage control system of 

the ruling engine will react to this change in wavelength, causing a 

variation in groove spacing.  

 The ruling engine must also be isolated from those vibrations that are 

easily transmitted to the diamond.  This may be done by suspending the 

engine mount from springs that isolate vibrations between frequencies 

from 2 or 3 Hz (which are of no concern) to about 60 Hz, above which vi-

bration amplitudes are usually too small to have a noticeable effect on 

ruled master grating quality.13 

 The actual ruling of a master grating is a long, slow and painstaking 

process.  The set-up of the engine, prior to the start of the ruling, requires 

great skill and patience.  The critical alignment requires the use of a high-

power interference microscope, or an electron microscope for more finely 

spaced grooves. 

 After each microscopic examination, the diamond is readjusted until 

the operator is satisfied that the groove shape is appropriate for the 

                                                             
12 H. W. Babcock, “Control of a ruling engine by a modulated interferometer,” Appl. Opt. 1, 
415-420 (1962). 

13 G. R. Harrison, “Production of diffraction gratings. I. Development of the ruling art,” J. 
Opt. Soc. Am. 39, 413-426 (1949). 
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particular grating being ruled.  This painstaking adjustment, although 

time consuming, results in very "bright" gratings with nearly all the 

diffracted light energy concentrated in a specific angular range of the 

spectrum.  This ability to concentrate the light selectively at a certain part 

of the spectrum is what distinguishes blazed diffraction gratings from all 

others. 

 Finished master gratings are carefully tested to be certain that they 

have met specifications completely.  The wide variety of tests run to 

evaluate all the important properties include spectral resolution, 

efficiency, Rowland ghost intensity, and surface accuracy.  Wavefront 

interferometry is used when appropriate.  If a grating meets all specifica-

tions, it is then used as a master for the production of our replica 

gratings. 

 

 

Figure 3-2.  Atomic force micrograph of a ruled grating.  This grating was ruled with 400 

g/mm (groove spacing of 2.5 µm).  The horizontal and vertical scales are not the same. 

3.3. VARIED LINE-SPACE (VLS) GRATINGS 

 For over a century, great effort has been expended in keeping the 

spacing between successive grooves uniform as a master grating is ruled.  

In an 1893 paper, Cornu realized that variations in the groove spacing 

modified the curvature of the diffracted wavefronts.14  While periodic and 

random variations were understood to produce stray light, a uniform 

variation in groove spacing across the grating surface was recognized by 

Cornu to change the location of the focus of the spectrum, which need not 

be considered a defect if properly taken into account.  He determined that 

                                                             
14 M. A. Cornu, “Vérifications numériques relatives aux propriétés focales des réseaux 
diffringents plans,” Comptes Rendus Acad. Sci. 117, 1032-1039 (1893). 
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a planar classical grating, which by itself would have no focusing 

properties if used in collimated incident light, would focus the diffracted 

light if ruled with a systematic 'error' in its groove spacing.  He was able 

to verify this by ruling three gratings whose groove positions were 

specified to vary as each groove was ruled.  Such gratings, in which the 

pattern of straight parallel grooves has a variable yet well-defined 

(though not periodic) spacing between successive grooves, are now called 

varied line-space (VLS) gratings.  VLS gratings have not found use in 

commercial instruments but are occasionally used in spectroscopic 

systems for synchrotron light sources. 

  

 



 

45 

 

4. HOLOGRAPHIC GRATINGS   
4.0. INTRODUCTION 

 Since the late 1960s, a method distinct from mechanical ruling has 

also been used to manufacture diffraction gratings.15  This method 

involves the photographic recording of a stationary interference fringe 

field.  Such interference gratings, more commonly known as holographic 

gratings, have several characteristics that distinguish them from ruled 

gratings. 

 In 1901 Aimé Cotton produced experimental holographic gratings,16 

fifty years before the concepts of holography were developed by Gabor.  A 

few decades later, Michelson considered the interferometric generation of 

diffraction gratings obvious, but recognized that an intense 

monochromatic light source and a photosensitive material of sufficiently 

fine granularity did not then exist.17  In the mid-1960s, ion lasers and 

photoresists became available; the former provides a strong 

monochromatic line and the latter is photoactive at the molecular level, 

rather than at the crystalline level (such as photographic film).   

4.1. PRINCIPLE OF MANUFACTURE 

4.1.1. Formation of an interference pattern 

 When two sets of coherent equally polarized monochromatic optical 

plane waves of equal intensity intersect each other, a standing wave pat-

tern will be formed in the region of intersection if both sets of waves are 

of the same wavelength  (see Figure 4-1).*  The combined intensity dis-

                                                             
15 D. Rudolph and G. Schmahl, “Verfahren zur Herstellung von Röntgenlinsen und 
Beugungsgittern,” Umschau Wiss. Tech. 78, 225 (1967);  G. Schmahl, “Holographically 
made diffraction gratings for the visible, UV and soft x-ray region,” J. Spectrosc. Soc. 
Japan 23, 3-11 (1974);  A. Labeyrie and J. Flamand, “Spectroscopic performance of 
holographically made diffraction gratings,” Opt. Commun. 1, 5 (1969). 

16 A. Cotton, “Resaux obtenus par la photographie des ordes stationaires,” Seances Soc. 
Fran. Phys. 70-73 (1901). 

17 A. A. Michelson, Studies in Optics (U. Chicago, 1927; reprinted by Dover Publications, 
1995). 

* Most descriptions of holographic grating recording stipulate coherent beams, but such 
gratings may also be made using incoherent light; see M. C. Hutley, “Improvements in or 
relating to the formation of photographic records,” UK Patent no. 1384281 (1975). 
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tribution forms a set of straight equally-spaced fringes (bright and dark 

lines).  Thus, a photographic plate would record a fringe pattern, since 

the regions of zero field intensity would leave the film unexposed while 

the regions of maximum intensity would leave the film maximally 

exposed.  Regions between these extremes, for which the combined 

intensity is neither maximal nor zero, would leave the film partially 

exposed.  The combined intensity varies sinusoidally with position as the 

interference pattern is scanned along a line.  If the beams are not of equal 

intensity, the minimum intensity will no longer be zero, thereby 

decreasing the contrast between the fringes.  As a consequence, all 

portions of the photographic plate will be exposed to some degree. 

 The centers of adjacent fringes (that is, adjacent lines of maximum 

intensity) are separated by a distance d, where 

   d =




sin2
 (4-1) 

and  is the half the angle between the beams.  A small angle between the 

beams will produce a widely spaced fringe pattern (large d), whereas a 

larger angle will produce a fine fringe pattern.  The lower limit for d is 

/2, so for visible recording light, thousands of fringes per millimeter 

may be formed. 

4.1.2. Formation of the grooves 

 Master holographic diffraction gratings are recorded in photoresist, a 

material whose intermolecular bonds are either strengthened or weak-

ened by exposure to light.   Commercially available photoresists are more 

sensitive to some wavelengths than others; the recording laser line must 

be matched to the type of photoresist used.   The proper combination of 

an intense laser line and a photoresist that is highly sensitive to this 

wavelength will reduce exposure time. 

 Photoresist gratings are chemically developed after exposure to re-

veal the fringe pattern.  A photoresist may be positive or negative, though 

the latter is rarely used.  During chemical development, the portions of a 

substrate covered in positive photoresist that have been exposed to light 

are dissolved, while for negative photoresist the unexposed portions are 

dissolved.  Upon immersion in the chemical developer, a surface relief 

pattern is formed: for positive photoresist, valleys are formed where the 

bright fringes were, and ridges where the dark fringes were.  At this stage 

a master holographic grating has been produced; its grooves are 
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sinusoidal ridges.  This grating may be coated and replicated like master 

ruled gratings.   

 

 

Figure 4-1.  Formation of interference fringes.  Two collimated beams of wavelength  

form an interference pattern composed of straight equally spaced planes of intensity 

maxima (shown as the horizontal lines).  A sinusoidally varying interference pattern is 

found at the surface of a substrate placed perpendicular to these planes. 

 Lindau has developed simple theoretical models for the groove 

profile generated by making master gratings holographically and shown 

that even the application of a thin metallic coating to the holographically-

produced groove profile can alter that profile.18 

4.2. CLASSIFICATION OF HOLOGRAPHIC GRATINGS  

4.2.1. Single-beam interference 

 An interference pattern can be generated from a single collimated 

monochromatic coherent light beam if it is made to reflect back upon 

itself.  A standing wave pattern will be formed, with intensity maxima 

forming planes parallel to the wavefronts.  The intersection of this 

interference pattern with a photoresist-covered substrate will yield on its 

surface a pattern of grooves, whose spacing d depends on the angle  

between the substrate surface and the planes of maximum intensity (see 

Figure 4-2)19; the relation between d and  is identical to Eq. (4-1), 

though it must be emphasized that the recording geometry behind the 

                                                             
18 S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371-
1381 (1982). 

19 N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316-318 (1968). 



 

48 

 

single-beam holographic grating (or Sheridon grating) is different from 

that of the double-beam geometry for which Eq. (4-1) was derived. 

 The groove depth h for a Sheridon grating is dictated by the 

separation between successive planes of maximum intensity (nodal 

planes); explicitly, 

  h = 
n2

0 ,  (4-2) 

where  is the wavelength of the recording light and n the refractive 

index of the photoresist.  This severely limits the range of available blaze 

wavelengths, typically to those between 200 and 250 nm. 

 

 

Figure 4-2.  Sheridon recording method.  A collimated beam of light, incident from the 

right, is retroreflected by a plane mirror, which forms a standing wave pattern whose 

intensity maxima are shown.  A transparent substrate, inclined at an angle  to the fringes, 

will have its surfaces exposed to a sinusoidally varying intensity pattern. 

4.2.2. Double-beam interference 

 The double-beam interference pattern shown in Figure 4-1 is a series 

of straight parallel fringe planes, whose intensity maxima (or minima) are 

equally spaced throughout the region of interference.  Placing a substrate 

covered in photoresist in this region will form a groove pattern defined by 

the intersection of the surface of the substrate with the fringe planes.  If 

the substrate is planar, the grooves will be straight, parallel and equally 

spaced, though their spacing will depend on the angle between the 

substrate surface and the fringe planes.  If the substrate is concave, the 

grooves will be curved and unequally spaced, forming a series of circles of 

different radii and spacings.  Regardless of the shape of the substrate, the 

intensity maxima are equally spaced planes, so the grating recorded will 

be a classical equivalent holographic grating (more often called simply a 
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classical grating).  This name recognizes that the groove pattern (on a 

planar surface) is identical to that of a planar classical ruled grating.  

Thus, all holographic gratings formed by the intersection of two sets of 

plane waves are called classical equivalents, even if their substrates are 

not planar (and therefore their groove patterns are not straight equally 

spaced parallel lines).  

 If two sets of spherical wavefronts are used instead, as in Figure 4-3, 

a first generation holographic grating is recorded. The surfaces of maxi-

mum intensity are now confocal hyperboloids (if both sets of wavefronts 

are converging, or if both are diverging) or ellipsoids (if one set is con-

verging and the other diverging).  This interference pattern can be 

obtained by focusing the recording laser light through pinholes (to 

simulate point sources).  Even on a planar substrate, the fringe pattern 

will be a collection of unequally spaced curves.  Such a groove pattern will 

alter the curvature of the diffracted wavefronts, regardless of the sub-

strate shape, thereby providing focusing.  Modification of the curvature 

and spacing of the grooves can be used to reduce aberrations in the 

spectral images; as there are three degrees of freedom in such a recording 

geometry, three aberrations can be reduced (see Chapter 6). 

 

 

Figure 4-3.  First-generation recording method.  Laser light focused through pinholes at A 

and B forms two sets of spherical wavefronts, which diverge toward the grating substrate.  

The standing wave region is shaded; the intensity maxima are confocal hyperboloids. 

 The addition of auxiliary concave mirrors or lenses into the recording 

beams can render the recording wavefronts toroidal (that is, their 

curvature in two perpendicular directions will generally differ).  The 
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grating thus recorded is a second generation holographic grating.20 The 

additional degrees of freedom in the recording geometry (e.g., the 

location, orientation and radii of the auxiliary mirrors) provide for the 

reduction of additional aberrations above the three provided by first 

generation holographic gratings.21 

 The use of aspheric recording wavefronts can be further 

accomplished by using aberration-reduced gratings in the recording 

system; the first set of gratings is designed and recorded to produce the 

appropriate recording wavefronts to make the second grating.22  Another 

technique is to illuminate the substrate with light from one real source, 

and reflect the light that passes through the substrate by a mirror behind 

it, so that it interferes with itself to create a stationary fringe pattern.23  

Depending on the angles involved, the curvature of the mirror and the 

curvature of the front and back faces of the substrate, a number of 

additional degrees of freedom may be used to reduce high-order 

aberrations.  [Even more degrees of freedom are available if a lens is 

placed in the recording system thus described.24]  

4.3. THE HOLOGRAPHIC RECORDING PROCESS 

 Holographic gratings are recorded by placing a light-sensitive surface 

in an interferometer.  The generation of a holographic grating of 

spectroscopic quality requires a stable optical bench and laser as well as 

high-quality optical components (mirrors, collimating optics, etc.).  

Ambient light must be eliminated so that fringe contrast is maximal.  

Thermal gradients and air currents, which change the local index of 

refraction in the beams of the interferometer, must be avoided.  MKS 

                                                             
20 C. Palmer, “Theory of second-generation holographic gratings,” J. Opt. Soc. Am. A6, 
1175-1188 (1989);  T. Namioka and M. Koike, “Aspheric wavefront recording optics for 
holographic gratings,” Appl. Opt. 34, 2180-2186 (1995). 

21 M. Duban, “Holographic aspheric gratings printed with aberrant waves,” Appl. Opt. 26, 
4263-4273 (1987). 

22 E. A. Sokolova, “Concave diffraction gratings recorded in counterpropagating beams,” J. 
Opt. Technol. 66, 1084-1088 (1999);  E. A. Sokolova, “New-generation diffraction 
gratings,” J. Opt. Technol. 68, 584-589 (2001). 

23 E. A. Sokolova, “Geometric theory of two steps recorded holographic diffraction 
gratings,” Proc. SPIE 3540, 113-324 (1998);  E. Sokolova, B. Kruizinga, T. Valkenburg and 
J. Schaarsberg, “Recording of concave diffraction gratings in counterpropagating beams 
using meniscus blanks,” J. Mod. Opt. 49, 1907-1917 (2002). 

24 E. Sokolova, B. Kruizinga and I. Golubenko, “Recording of concave diffraction gratings 
in a two-step process using spatially incoherent light,” Opt. Eng. 43, 2613-2622 (2004). 
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records master holographic gratings in a clean room specially-designed to 

meet these requirements. 

 During the recording process, the components of the optical system 

must be of nearly diffraction-limited quality, and mirrors, pinholes and 

spatial filters must be adjusted as carefully as possible.  Any object in the 

optical system receiving laser illumination may scatter this light toward 

the grating, which will contribute to stray light.  Proper masking and 

baffling during recording are essential to the successful generation of a 

holographic grating, as is single-mode operation of the laser throughout 

the duration of the exposure. 

 The substrate on which the master holographic grating is to be 

produced must be coated with a highly uniform, virtually defect-free 

coating of photoresist.  Compared with photographic film, photoresists 

are somewhat insensitive to light during exposure, due to the molecular 

nature of their interaction with light.  As a result, typical exposures may 

take from minutes to hours, during which time an extremely stable fringe 

pattern (and, therefore, optical system) is required.  After exposure, the 

substrate is immersed in a developing agent, which forms a surface relief 

fringe pattern; coating the substrate with metal then produces a master 

holographic diffraction grating. 

 

 

Figure 4-4.  Atomic force micrograph of a holographic grating.  A sinusoidal holographic 

grating with 1000 g/mm (1 µm groove spacing) is shown.  The horizontal and vertical scales 

are not the same. 
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4.4. DIFFERENCES BETWEEN RULED AND 

HOLOGRAPHIC GRATINGS 

 Due to the distinctions between the fabrication processes for ruled 

and holographic gratings, each type of grating has advantages and 

disadvantages relative to the other, some of which are described below. 

4.4.1. Differences in grating efficiency 

 The efficiency curves of ruled and holographic gratings generally 

differ considerably, though this is a direct result of the differences in 

groove profiles and not strictly due to method of making the master 

grating. For example, holographic gratings made using the Sheridon 

method described in Section 4.2.1 above have nearly triangular groove 

profiles, and therefore have efficiency curves that look more like those of 

ruled gratings than those of sinusoidal-groove holographic gratings. 

 There exist no clear rules of thumb for describing the differences in 

efficiency curves between ruled and holographic gratings; the best way to 

gain insight into these differences is to look at representative efficiency 

curves of each grating type.  Chapter 9 in this Handbook contains a 

number of efficiency curves; the paper25 by Loewen et al. on which this 

chapter is based contains even more efficiency curves, and the book 

Diffraction Gratings and Applications26 by Loewen and Popov has an 

extensive collection of efficiency curves and commentary regarding the 

efficiency behavior of plane reflection gratings, transmission gratings, 

echelle gratings and concave gratings. 

4.4.2. Differences in scattered light 

 Since holographic gratings do not involve burnishing grooves into a 

thin layer of metal, the surface irregularities on its grooves differ from 

those of mechanically ruled gratings.  Moreover, errors of ruling, which 

are a manifestation of the fact that ruled gratings have one groove formed 

after another, are nonexistent in interferometric gratings, for which all 

grooves are formed simultaneously.  Holographic gratings, if properly 

made, can be entirely free of both small periodic and random groove 

                                                             
25 E. G. Loewen, M. Nevière and D. Maystre, "Grating efficiency theory as it applies to 
blazed and holographic gratings," Appl. Opt. 16, 2711-2721 (1977). 

26 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. 
(1997). 
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placement errors found on even the best mechanically ruled gratings.  

Holographic gratings may offer advantages to spectroscopic systems in 

which light scattered from the grating surface is performance-limiting, 

such as in the study of the Raman spectra of solid samples, though proper 

instrumental design is essential to ensure that the performance of the 

optical system is not limited by other sources of stray light. 

 While holographic gratings generally exhibit lower scattered light 

than early ruled gratings, modern control systems and improved master 

coatings have led to ruled masters whose replicas exhibit scattered light 

as low as that of replicas of holographic masters.  Some commercially-

available Raman spectrometers now use ruled gratings, since their 

scattered light properties are suitable even for such a demanding 

application. 

4.4.3. Differences and limitations in the groove profile 

 The groove profile has a significant effect on the light intensity 

diffracted from the grating (see Chapter 9).  While ruled gratings may 

have triangular or trapezoidal groove profiles, holographic gratings 

usually have sinusoidal (or nearly sinusoidal) groove profiles (see Figure 

4-5).  A ruled grating and a holographic grating, identical in every way 

except in groove profile, will have demonstrably different efficiencies 

(diffraction intensities) for a given wavelength and spectral order.  

Moreover, ruled gratings are more easily blazed (by choosing the proper 

shape of the burnishing diamond) than are holographic gratings, which 

are usually blazed by ion bombardment (ion etching).  Differences in the 

intensity diffracted into the order in which the grating is to be used 

implies differences in the intensities in all other orders as well; excessive 

energy in other orders usually makes the suppression of stray light more 

difficult. 

 The distribution of groove profile characteristics across the surface of 

a grating may also differ between ruled and holographic gratings.  For a 

ruled concave grating, the facet angles are not aligned identically, and the 

effective blaze wavelength varies from one side of the grating to the other.  

A holographic grating, on the other hand, usually demonstrates much less 

variation in efficiency characteristics across its surface.  Gratings have 

been ruled by changing the facet angle at different places on the substrate 

during ruling.  These so-called "multipartite" gratings, in which the ruling 

is interrupted and the diamond reoriented at different places across the 

width of the grating, demonstrate enhanced efficiency but do not provide 
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the resolving power expected from an uninterrupted ruling (since each 

section of grooves may be out of phase with the others).27 

 

 

Figure 4-5.  Ideal groove profiles for ruled and holographic gratings.  (a) Triangular 

grooves, representing the profile of a typical mechanically ruled grating. (b) Sinusoidal 

grooves, representing the profile of a typical holographic grating.* 

4.4.4. Range of obtainable groove frequencies 

 The number of grooves per millimeter for ruled and holographic 

gratings can vary over a very wide range.  Gratings of both types can be 

made with very coarse groove patterns – as low as 30 g/mm for ruled 

gratings and as low as 1 g/mm for holographic gratings.  As an upper 

limit, both holographic and ruled gratings have been produced with 

groove densities up to 10,000 grooves per millimeter. 

4.4.5. Differences in the groove patterns 

 Classical ruled plane gratings, which constitute the vast majority of 

ruled gratings, have straight equally-spaced grooves.  Classical ruled 

concave gratings have unequally spaced grooves that form circular arcs 

on the grating surface, but this groove pattern, when projected onto the 

plane tangent to the grating at its center, is still a set of straight equally 

spaced lines.  [It is the projected groove pattern that governs imaging.28]  

Even ruled varied line-space (VLS) gratings (see Chapter 3) do not 

                                                             
27 M. C. Hutley and W. R. Hunter, "Variation of blaze of concave diffraction gratings," 
Appl. Opt. 20, 245-250 (1981). 

* Holographic gratings may also be made with quasi-triangular grooves (using the Sheridon 
method and by ion etching) as well as other grooves profiles (e.g., circular bumps, 
trapezoids); different groove profile provide different efficiency characteristics. 

28 C. Palmer and W. R. McKinney, "Imaging theory of plane-symmetric varied line-space 
grating systems," Opt. Eng. 33, 820-829 (1994). 
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contain curved grooves, except on curved substrates.  The aberration 

reduction possible with ruled gratings is therefore limited to that possible 

with straight grooves, though this limitation is due to the mechanical mo-

tions possible with present-day ruling engines rather than with the 

burnishing process itself. 

 Holographic gratings, on the other hand, need not have straight 

grooves.  Groove curvature can be modified to reduce aberrations in the 

spectrum, thereby improving the throughput and spectral resolution of 

imaging spectrometers.  A common spectrometer mount is the flat-field 

spectrograph, in which the spectrum is imaged onto a flat detector array 

and several wavelengths are monitored simultaneously.  Holographic 

gratings can significantly improve the imaging of such a grating system, 

whereas classical ruled gratings are not suitable for forming well-focused 

planar spectra without auxiliary optics. 

4.4.6. Differences in the substrate shapes 

 The interference pattern used to record holographic gratings is not 

dependent on the substrate shape or dimension, so gratings can be 

recorded interferometrically on substrates of low ƒ/number more easily 

than they can be mechanically ruled on these substrates.  Consequently, 

holographic concave gratings lend themselves more naturally to systems 

with short focal lengths. Holographic gratings of unusual curvature can 

be recorded easily; of course, there may still remain technical problems 

associated with the replication and testing of such gratings. 

 The substrate shape affects both the grating efficiency characteristics 

its imaging performance.   

• Grating efficiency depends on the groove profile as well as the angle 

at which the light is incident and diffracted; for a concave grating, 

both the groove profile and the local angles vary with position on the 

grating surface.  This leads to the efficiency curve being the sum of 

the various efficiency curves for small regions of the grating, each 

with its own groove profile and incidence and diffraction angles.   

• Grating imaging depends on the directions of the diffracted rays over 

the surface of the grating, which in turn are governed by the local 

groove spacing and curvature (i.e., the groove pattern) as well as the 

local incidence angle.  For a conventional plane grating used in 

collimated light, the groove pattern is the same everywhere on the 

grating surface, as is the incidence angle, so all diffracted rays are 

parallel.  For a grating on a concave substrate, though, the groove 
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pattern is generally position-dependent, as is the local incidence 

angle, so the diffracted rays are not parallel – thus the grating has 

focal (imaging) properties as well as dispersive properties. 

4.4.7. Differences in the size of the master substrate 

 While ruled master gratings can generally be as large as 320 x 420 

mm, holographic master gratings are rarely this large, due to the 

requirement that the recording apparatus contain very large, high-quality 

lenses or mirrors, and well as due to the decrease in optical power farther 

from the center of the master grating substrate.   

4.4.8. Differences in generation time for master gratings 

 A ruled master grating is formed by burnishing each groove individ-

ually; to do so, the ruling diamond may travel a very large distance to rule 

one grating.  For example, a square grating of dimensions 100 x 100 mm 

with 1000 grooves per millimeter will require the diamond to move 10 

km (over six miles), which may take several weeks to rule.   

 In the fabrication of a master holographic grating, on the other hand, 

the grooves are created simultaneously.  Exposure times vary from a few 

minutes to tens of minutes, depending on the intensity of the laser light 

used and the spectral response (sensitivity) of the photoresist at this 

wavelength.  Even counting preparation and development time, 

holographic master gratings are produced much more quickly than ruled 

master gratings.  Of course, an extremely stable and clean optical 

recording environment is necessary to record precision holographic 

gratings.  For plane gratings, high-grade collimating optics are required, 

which can be a limitation for larger gratings.  
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55..  REPLICATED GRATINGS    
5.0. INTRODUCTION 

 Decades of research and development have contributed to the 

process for manufacturing replicated diffraction gratings (replicas) of 

spectroscopic quality.  This process is capable of producing thousands of 

duplicates of master gratings which equal the quality and performance of 

the master gratings themselves.  The replication process has reduced the 

price of a typical diffraction grating by a factor of one hundred or more, 

compared with the cost of acquiring a master grating, as well as greatly 

increasing their commercial availability. 

5.1. THE REPLICATION PROCESS 

 The process for making replica gratings results in a grating whose 

grooves are formed in a very thin layer of resin that adheres strongly to 

the surface of the substrate material.  The optical surface of a reflection 

replica is usually coated with aluminum (Al), but gold (Au) or silver (Ag) 

is recommended for greater diffracted energy in certain spectral regions.  

Transmission gratings have no reflective coating. 

 Most commercially-available surface-relief gratings are made using a 

casting process, which faithfully reproduces the three-dimension nature 

of the grating surface.  It is for this reason that photographic replication 

techniques are not generally sufficient.29 

 The casting process for the production of a replicated diffraction 

grating is a series of sequential steps:   

1. Submaster selection.  The replication process starts with the 

selection of a suitable submaster grating that has the desired 

specifications (groove frequency, blaze angle, size, etc.).  [A 

submaster grating is a grating replicated from a master, or from 

another submaster, but is itself used not as a final optical product but 

as a mold for the replication of product gratings; for this reason, it is 

not strictly required that a submaster grating meet all of the 

performance specifications of the product grating (e.g., it need not 

have a suitably reflective coating).] 

                                                             
29 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. 
(1997), p. 577. 
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2. Application of parting agent.  A parting agent is applied to the 

surface of the submaster grating.  The parting agent serves no optical 

purpose and should have no deleterious optical effects but aids in the 

separation of the delicate submaster and product grating surfaces.  

Since the replicated optical surface is intended to match that of the 

submaster as closely as possible, the parting agent must be very thin 

and conformal to the surface of the submaster.30 

3. Application of transfer coating.  After the parting agent is applied, a 

reflective coating (usually aluminum) is applied to the surface of the 

submaster.  This coating will form the optical surface of the product 

grating upon separation.  To obtain an optical quality coating, this 

step is performed in a vacuum deposition chamber.  [Since this 

coating is applied to the submaster, but transfers to the product 

grating upon separation, it is called a transfer coating.]  Typical 

transfer coating thicknesses are about one micron. 

4. Cementing  A substrate is then cemented with a layer of resin to the 

grooved surface of the master grating; this layer can vary in 

thickness, but it is usually tens of microns thick.   It is the resin that 

holds the groove profile and replicates it from the submaster to the 

product; the transfer coating is much too thin for this purpose.  The 

“sandwich” formed by the substrate and submaster cemented 

together is shown in Figure 5-1. 

Since the resin is in the liquid state when it is applied to the 

submaster, it must harden sufficiently to ensure that it can maintain 

the groove profile faithfully when the product grating is separated 

from the submaster.  This hardening, or curing, is usually 

accomplished by a room-temperature cure period (lasting from hours 

to days) or by heating the resin to accelerate the curing, though 

gratings can also be replicated using a UV-curable resin.31 

5. Separation.  After the resin is fully cured, the groove profile is 

faithfully replicated in the resin when the submaster and product are 

separated.  The parting agent serves as the weak interface and allows 

the separation to take place between the submaster coating and the 

                                                             
30 E. G. Loewen, Replication of Mirrors and Diffraction Gratings, SPIE Tutorial T10 
(1983). 

31 S. D. Fantone, “Replicating optical surfaces using UV curing cements: a method,” Appl. 
Opt. 22, 764 (1983);  R. J. M. Zwiers and G. C. M. Dortant, “Aspheric lenses produced by a 
fast high-precision replication process using UV-curable coatings,” Appl. Opt. 24, 4483-
4488 (1985). 
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transfer metallic coating.   The groove profile on the product is the 

inverse of the groove profile on the submaster; if this profile is not 

symmetric with respect to this inversion, the efficiency characteristics 

of the product grating will generally differ from those of the 

submaster grating.  In such cases, an additional replication must be 

done to invert the inverted profile, resulting in a profile identical to 

that of the original submaster.  However, for certain types of gratings, 

inversion of the groove increases efficiency significantly. 

 

 

Figure 5-1.  The replication “sandwich”.  The substrates, the resin layers, the metallic 

coatings, and the parting agent are shown.   

At this stage, if a transmission grating is desired, the transfer coating 

is removed from the product, leaving the groove structure intact in 

the transparent resin.   

6. Inspection.  After separation, both the submaster and the product 

gratings are inspected for surface or substrate damage.  The product 

grating may also be tested for key performance characteristics (e.g., 

efficiency, wavefront flatness (or curvature), scattered light, 

alignment of the grooves to a substrate edge) depending on 

requirements. 
 

 The product grating formed by this replication process may be used 

as an optical component, or it may serve as a mold (replication tool) by 

being considered a submaster.  In this way, a single master grating can 

make several submasters, each of which can make several more 

submasters, etc., to form a replication tree (see Figure 5-2).  

 The replication tree shown in Figure 5-2 illustrates two important 

features of replication: extension horizontally (within a generation) and 
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vertically (to subsequent generations).  Replication within a generation is 

accomplished by the successive replication of a single grating (much as a 

parent can have many children).  Replication to additional generations is 

accomplished by forming a replica (child), which itself forms a replica 

(grandchild), etc.  Thus replication can extend both within generations 

(X-1, X-2, X-3, X-4, …, all of which are replicated directly from the 

master) and to subsequent generations (X-1, X-1-3, X-1-3-1, X-1-3-1-4, …, 

each of which is replicated from the submaster before it) to create a large 

number of replicas from a single master grating. 

 As an example, consider a master grating X from which five first-

generation replicas are made (X-1 through X-5).  Each of these is used as 

a submaster to form five replicas: X-1 forms X-1-1 through X-1-5, X-2 

forms X-2-1 through X-2-5, and so on.  This forms twenty-five second 

generation replicas.  If each of these replicas is itself replicated five 

times, we arrive at 125 third-generation replicas (X-1-1-1, X-1-1-2, …, 

through X-5-5-5).  This example illustrates that a large number of 

replicas can be made from a single master grating, assuming a 

conservative number of replicas and a reasonable number of generations. 

 

 

Figure 5-2.  A replication tree.  Master X is replicated to create several first-generation 

replicas (X-1, X-2, …), which themselves are replicated to form second-generation replicas 

(X-1-1, …), etc.   

 The number N of replicas of a particular generation that can be made 

from a single master can be estimated using the following formula, 

  
gRN  , (5-1) 
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where R is the number of replications per generation and g is the number 

of generations.  Reasonable values of R are 5 to 10 (though values well 

above 20 are not unheard of), and g generally ranges from 3 to 9.  

Conservatively, then, for R = 5 and g = 3, we have N = 125 third-

generation replicas; at the other end of the ranges we have R = 10 and g = 

9 so that N = 1,000,000,000 ninth-generation replicas.  Of course, one 

billion replicas of a single grating have never been required, but even if it 

were, Eq. (5-1) assumes that each replica in every generation (except the 

last generation) is replicated R times, whereas in practice most gratings 

cannot be replicated too many times before being damaged or otherwise 

rendered unusable.  That is, some branches of the replication tree are 

truncated prematurely as a result of manufacturing defects, i.e., because 

the manufacturing yield is less than 100%.  Consequently, Eq. (5-1) must 

be taken as an unreasonable upper limit, which becomes unrealistically 

high as either R or g increases beyond small numbers.  In practice, N is 

often in the thousands when required, and can be even higher if extra 

care is taken to ensure that the submasters in the replication tree are not 

damaged. 

5.2. REPLICA GRATINGS VS. MASTER GRATINGS 

 There are two fundamental differences between master gratings and 

replica gratings: how they are made and what they are made of. 

 Manufacturing process.  Replica gratings are made by the replication 

process outlined in Section 5.1 above – they are resin castings of master 

gratings.  The master gratings themselves, though, are not castings: their 

grooves are created either by burnishing (in the case of ruled gratings) or 

by optical exposure and chemical development (in the case of holographic 

gratings).   

 Composition.  Replica gratings are composed of a metallic coating on 

a resin layer, which itself rests on a substrate (usually glass).  Master 

gratings also usually have glass substrates but have no resin (the grooves 

of a ruled master are contained entirely within a metallic layer on the 

substrate, and those of a holographic master are contained entirely within 

a layer of photoresist or similar photosensitive material). 
 

 The differences in manufacturing processes for master gratings and 

replica gratings naturally provide an advantage in both production time 

and unit cost to replica gratings, thereby explaining their popularity, but 

the replication process itself must be designed and carried out to ensure 
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that the performance characteristics of the replicated grating match those 

of the master grating.  Exhaustive experimentation has shown how to 

eliminate loss of resolution between master and replica – this is done by 

ensuring that the surface figure of the replica matches that of the master, 

and that the grooves are not displaced or distorted as a result of 

replication.  The efficiency of a replica matches that of its master when 

the groove profile is reproduced faithfully.  Other characteristics, such as 

scattered light, are generally matched as well, provided care is taken 

during the transfer coating step to ensure a dense metallic layer.  [Even if 

the layer were not dense enough, so that its surface roughness caused 

increased scattered light from the replica when compared with the 

master, this would be diffuse scatter; scatter in the dispersion plane, due 

to irregularities in the groove spacing, would be faithfully replicated by 

the resin and does not depend significantly on the quality of the coating.]  

Circumstances in which a master grating is shown to be superior to a 

replicated grating are quite rare and can often be attributed to flaws or 

errors in the particular replication process used, not to the fact that the 

grating was replicated. 

 In one respect, replicated gratings can provide an advantage over 

master gratings: those cases where the ideal groove profile is not 

obtainable in a master grating, but the inverse profile is obtainable.  

Echelle gratings, for example, are ruled so that their grooves exhibit a 

sharp trough but a relatively less sharp peak.  By replicating, the groove 

profile is inverted, leaving a first-generation replica with a sharp peak.  

The efficiency of the replica will be considerably higher than the efficiency 

of the master grating.  In such cases, only odd-generation replicas are 

used as products, since the even-generation replicas have the same 

groove profile (and therefore the same efficiency characteristics) as the 

master itself.* 

 The most prominent hazard to a grating during the replication 

process, either master or replica, is scratching, since the grating surface 

consists of a thin metal coating on a resin layer.  Scratches involve 

damage to the groove profile, which generally leads to increased stray 

light, though in some applications this may be tolerable.  Scratches 

faithfully replicate from master to submaster to product, and cannot be 

                                                             
* By convention, a master grating is designated as the zeroth (0) generation, so the second-, 
fourth- and subsequent even-generation submasters from the master will have the same 
groove profile, and the first-, third- and subsequent odd-generation submasters will have 
inverted groove profiles. 
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repaired, since the grating surface is not a polished surface, and an 

overcoating will not repair the damaged grooves. 

 Another hazard during replication is surface contamination from fin-

gerprints; should this happen, a grating can sometimes (but not always) 

be cleaned or recoated to restore it to its original condition.  [In use, 

accidentally evaporated contaminants, typical of vacuum spectrometry 

pumping systems, can be especially harmful when baked on the surface of 

the grating with ultraviolet radiation.] 

5.3. STABILITY OF REPLICATED GRATINGS 

 Temperature.  There is no evidence of deterioration or change in 

standard replica gratings with age or when exposed to thermal variations 

from the boiling point of nitrogen (77 K = –196 °C) to 110 °C and above.  

In addition to choosing the appropriate resin, the cure cycle can be 

modified to result in a grating whose grooves will not distort under high 

temperature. 

 Gratings replicated onto substrates made of low thermal expansion 

materials behave as the substrate dictates: the resin and aluminum, 

which have much higher thermal expansion coefficients, are present in 

very thin layers compared with the substrate thickness and therefore do 

not expand and contract appreciably with temperature changes since they 

are fixed rigidly to the substrate. 

 Relative Humidity.  Standard replicas generally do not show signs of 

degradation in normal use in high relative humidity environments, but 

some applications (e.g., fiber-optic telecommunications) require 

extended exposure to very high humidity environments.  Coatings and 

epoxies that resist the effects of water vapor are necessary for these 

applications.    

 Instead of a special resin, the metallic coating on a reflection grating 

made with standard resin is often sufficient to protect the underlying 

resin from the effects of water vapor.  A transmission grating that 

requires protection from environmental water vapor can be so protected 

by applying a dielectric coating (e.g., SiO) to its grooved surface.32 

 Temperature and Relative Humidity.  Fiber optic 

telecommunications applications often require diffraction gratings that 

                                                             
32 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. 
(1997), p. 582. 
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meet harsh environmental standards, particularly those in the Telcordia 

document GR-1221, “Generic Reliability Assurance Requirements for 

Passive Optical Components”.  Special resin materials, along with 

specially-designed proprietary replication techniques, have been 

developed to produce replicated gratings that can meet this demanding 

requirement with no degradation in performance.  

 High Vacuum.  Even the highest vacuum, such as that of outer space, 

has no effect on replica gratings.  Concerns regarding outgassing from the 

resin are addressed by recognizing that the resin is fully cured.   However, 

some outgassing may occur in high vacuum, which may be a problem for 

gratings used in synchrotron beamlines; in certain cases, ruled master 

gratings are used instead.  

 Energy Density of the Beam.  For applications in which the energy 

density at the surface of the grating is very high (as in some pulsed laser 

applications), enough of the energy incident on the grating surface may 

be absorbed to cause damage to the surface.  In these cases, it may be 

necessary to make the transfer coat thicker than normal, or to apply a 

second metallic layer (an overcoat) to increase the opacity of the metal 

film(s) sufficiently to protect the underlying resin from exposure to the 

light and to permit the thermal energy absorbed from the pulse to be 

dissipated without damaging the groove profile.  Using a metal rather 

than glass substrate is also helpful in that it permits the thermal energy to 

be dissipated; in some cases, a water-cooled metal substrate is used for 

additional benefit.33 

 Pulsed lasers often require optical components with high damage 

thresholds, due to the short pulse duration and high energy of the pulsed 

beam.   For gratings used in the infrared, gold is generally used as the 

reflective coating (since it is more reflective than aluminum in the near 

IR). 

 A continuous-wave laser operating at  = 10.6 m was reported by 

Huguley and Loomis34 to generate damage to the surface of replicated 

grating at about 150 kW/cm2 or above. 

 Gill and Newnam35 undertook a detailed experimental study of laser-

induced damage of a set of master gratings and a set of replicated 

                                                             
33 F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34, 313-320 
(1995). 

34 C. A. Huguley and J. S. Loomis, “Optical material damage from 10.6 m CW radiation,” 
in Damage in Laser Materials, A. J. Glass and A. H. Guenther, eds., Nat. Bur. Stand. 
(U.S.) Spec. Publ. 435 (1975). 
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gratings using 30-ps pulses at  = 1.06 m.  They reported that the 

damage threshold for the holographic gratings they tested was a factor of 

1.5 to 5 times higher than for the ruled gratings they tested.  Differences 

in the damage threshold for S- vs. P-polarized light were also observed: 

the threshold for S-polarized light was 1.5 to 6 times higher than for P-

polarized light, though how this correlates to grating efficiency in these 

polarization states is not clear.  The (holographic) master gratings tested 

exhibited lower damage thresholds than did the replicated gratings.  

Some of the experimental results reported by Gill and Newnam are 

reproduced in Table 5-1. 

 Increasing the thickness of the reflective layer can, in certain 

circumstances, greatly increase the damage threshold of a replicated 

grating used in pulsed beams, presumably by reducing the maximum 

temperature which the metallic coating reaches during illumination.36 

 

 Damage Threshold (J/cm2) at  = 1.06 um 

 P polarization S polarization 

 Au coating Al coating Au coating Al coating 

1800 g/mm 

holographic #1 
2.6 0.3 1.2 0.1 

1800 g/mm 

holographic #2 
1.0 0.3 0.8 0.1 

600 g/mm ruled 1.1 0.2 0.4 0.1 

300 g/mm ruled 0.5 0.3 0.1 0.1 

Table 5-1. Damage thresholds reported by Gill and Newnam.  For these gratings, the 

difference in damage threshold measurements between Au and Al coatings, between P- and 

S-polarization, and between the 1800 g/mm holographic gratings and 300 and 600 g/mm 

ruled gratings are evident. 

Increasing the thickness of the reflective layer can, in certain 

circumstances, greatly increase the damage threshold of a replicated 

                                                                                                                                        
35 D. H. Gill and B. E. Newnam, “Picosecond-pulse damage studies of diffraction gratings,” 
in Damage in Laser Materials, H. E. Bennett, A. H. Guenther, D. Milam and B. E. 
Newnam, eds., Nat. Bur. Stand. (U.S.) Spec. Publ. 727 (1986), pp. 154-161. 

36 R. W. C. Hansen, “Replica grating radiation damage in a normal incidence 
monochromator,” Rev. Sci. Instrum. 67 (9), 1-5 (1996). 
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grating used in pulsed beams, presumably by reducing the maximum 

temperature which the metallic coating reaches during illumination.37 

 Experimental damage thresholds for continuous wave (cw) beams, 

reported by Loewen and Popov38, are given in Table 5-2.   

 Coating defects can play a critical role in the incidence of laser 

damage, as reported by Steiger and Brausse,39 who studied optical 

components illuminated by a pulsed Nd:YAG laser operating at  = 1.06 

m. 

 

Grating type 
Damage Threshold     

(power density) 

Standard replica grating 

on glass substrate 
40 to 80 W/cm2

 

Standard replica grating 

on copper substrate 
c. 100 W/cm2

 

Standard replica grating 

on water-cooled copper substrate 
150 to 250 W/cm2

 

Table 5-2. Damage thresholds for continuous wave (cw) beams.   

 Coating defects can play a critical role in the incidence of laser 

damage, as reported by Steiger and Brausse, who studied optical 

components illuminated by a pulsed Nd:YAG laser operating at  = 1.06 

m. 

5.4. DUAL-BLAZE GRATINGS  

 Using the replication process described above, replica gratings made 

from two different master gratings may be combined to make a single 

grating.   

 Two (or more) gratings with different groove spacings may be 

combined in this way.  Since the dispersion from each groove pattern will 

differ, though, the spectra will generally be imaged separately.  An optical 

                                                             
37 R. W. C. Hansen, “Replica grating radiation damage in a normal incidence 
monochromator,” Rev. Sci. Instrum. 67 (9), 1-5 (1996). 

38 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. 
(1997), p. 485. 

39 B. Steiger and H. Brausse, “Interaction of laser radiation with coating defects,” Proc. 
SPIE 2428, 559-567 (1995). 
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component of this nature would serve as two distinct gratings whose 

positions and orientations are fixed relative to each other. 

 Gratings with the same groove spacing, however, may be combined in 

this way to form a component that behaves like a single grating, but with 

an efficiency curve formed by the weighted average of the efficiencies of 

the sections (weighted by the illuminated areas of each section).  Such 

dual-blaze gratings can provide efficiency curves that are not achievable 

with conventionally produced gratings, due to limitations in the available 

groove profiles.  The relative areas of the two sections can be chosen to 

tailor the efficiency behavior of the entire grating. 

 Dual-blaze gratings are made by carefully replicating submasters 

from two different gratings together to produce a dual-blaze submaster, 

which itself is replicated using conventional means.  Gratings made in 

this way have exhibited wavefront distortions of /4 or less, and exhibit 

efficiency characteristics that cannot be obtained from single ruled 

gratings, in that their efficiency curves have lower and broader peaks (see 

Figure 5-3). 

  

 

Figure 5-3.  Efficiency curve of a dual-blaze grating.  Two ruled gratings G1 and G2, of the 

same groove spacing but blazed at 250 nm and 450 nm, and combined to form a dual-blaze 

grating G.  Equal areas of each of the two grating are illuminated to create a grating with 

the solid efficiency curve. 
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6. PLANE GRATINGS AND THEIR 

MOUNTS  
6.1. GRATING MOUNT TERMINOLOGY 

 The auxiliary collimating and focusing optics that modify the 

wavefronts incident on and diffracted by a grating, as well as the angular 

configuration in which it is used, is often called its mount.  Grating 

mounts are a class of spectrometer, a term that usually refers to any 

spectroscopic instrument, regardless of whether it scans wavelengths 

individually or entire spectra simultaneously, or whether it employs a 

prism or grating.  For this discussion we consider grating spectrometers 

only.   

 A monochromator is a spectrometer that images a single wavelength 

or wavelength band at a time onto an exit slit; the spectrum is scanned by 

the relative motion of the entrance and/or exit optics (usually slits) with 

respect to the grating.  A spectrograph is a spectrometer that images a 

range of wave-lengths simultaneously, either onto photographic film or a 

series of detector elements, or through several exit slits (sometimes called 

a polychromator).  The defining characteristic of a spectrograph is that 

an entire section of the spectrum is recorded at once. 

6.2. PLANE GRATING MONOCHROMATOR MOUNTS 

 A plane grating is one whose surface is flat.  Plane gratings are 

normally used in collimated incident light, which is dispersed by 

wavelength but is not focused.  Plane grating mounts generally require 

auxiliary optics, such as lenses or mirrors, to collect and focus the energy.  

Some simplified plane grating mounts illuminate the grating with 

converging light, though the focal properties of the system will then 

depend on wavelength.  For simplicity, only plane reflection grating 

mounts are discussed below, though each mount may have a 

transmission grating analogue.  
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6.2.1. The Czerny-Turner monochromator40 

 This design involves a classical plane grating illuminated by colli-

mated light.  The incident light is usually diverging from a source or slit, 

and collimated by a concave mirror (the collimator), and the diffracted 

light is focused by a second concave mirror (the camera); see Figure 6-1.  

Ideally, since the grating is planar and classical, and used in collimated 

incident light, no aberrations should be introduced into the diffracted 

wavefronts.  In practice, since spherical mirrors are often used, 

aberrations are contributed by their use off-axis.41 

 

 

Figure 6-1.  The Czerny-Turner mount.  The plane grating provides dispersion and the 

concave mirrors provide focusing. 

 Like all monochromator mounts, the wavelengths are imaged 

individually.  The spectrum is scanned by rotating the grating; this moves 

the grating normal relative to the incident and diffracted beams, which 

(by Eq. (2-1)) changes the wavelength diffracted toward the second 

mirror.  Since the light incident on and diffracted by the grating is 

collimated, the spectrum remains at focus at the exit slit for each wave-

length, since only the grating can introduce wavelength-dependent 

focusing properties.  

                                                             
40 A. Shafer, L. Megil and L. Droppelman, “Optimization of Czerny-Turner spectrometers,” 
J. Opt. Soc. Am. 54, 879-888 (1964);  J. M. Simon, M. A. Gil and A. N. Fantino, “Czerny-
Turner monochromator: astigmatism in the classical and in the crossed beam dispositions,” 
Appl. Opt. 25, 3715-3720 (1986);  K. M. Rosfjord, R. A. Villalaz and T. K. Gaylord, 
“Constant-bandwidth scanning of the Czerny-Turner monochromator,” Appl. Opt. 39, 568-
572 (2000). 

41 R. F. James and R. S. Sternberg, The Design of Optical Spectrometers, Chapman and 
Hall (London: 1969). 
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 Aberrations* caused by the auxiliary mirrors include astigmatism and 

spherical aberration (each of which is contributed additively by the 

mirrors); as with all concave mirror geometries, astigmatism increases as 

the angle of reflection increases.  Coma, though generally present, can be 

eliminated at one wavelength through proper choice of the angles of re-

flection at the mirrors; due to the anamorphic (wavelength-dependent) 

tangential magnification of the grating, the images of the other 

wavelengths experience higher-order coma (which becomes troublesome 

only in special systems). 

6.2.2. The Ebert monochromator42 

 This design is a special case of a Czerny-Turner mount in which a 

single relatively large concave mirror serves as both the collimator and 

the camera (Figure 6-2).  Its use is limited, since stray light and aber-

rations are difficult to control – the latter effect being a consequence of 

the relatively few degrees of freedom in design (compared with a Czerny-

Turner monochromator).  This can be seen by recognizing that the Ebert 

monochromator is a special case of the Czerny-Turner monochromator in 

which both concave mirror radii are the same, and for which their centers 

of curvature coincide.  However, an advantage that the Ebert mount 

provides is the avoidance of relative misalignment of the two mirrors. 

 

 

Figure 6-2.  The Ebert mount.  A single concave mirror replaces the two concave mirrors 

found in Czerny-Turner mounts. 

                                                             
* See Chapter 7 for a discussion of aberrations. 

42 H. Ebert, Wied. Ann. 38, 489 (1889); H. Kayser, Handbuch der Spectroscopie (1900), 
vol. 1. 
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 Fastie improved upon the Ebert design by replacing the straight 

entrance and exit slits with curved slits, which yields higher spectral 

resolution.43 

6.2.3. The Monk-Gillieson monochromator44 

 In this mount (see Figure 6-3), a plane grating is illuminated by 

converging light.  Usually light diverging from an entrance slit (or fiber) is 

rendered converging by off-axis reflection from a concave mirror (which 

introduces aberrations, so the light incident on the grating is not com-

posed of perfectly spherical converging wavefronts).  The grating diffracts 

the light, which converges toward the exit slit; the spectrum is scanned by 

rotating the grating to bring different wavelengths into focus at or near 

the exit slit.  Often the angles of reflection (from the primary mirror), in-

cidence and diffraction are small (measured from the appropriate surface 

normals), which keeps aberrations (especially off-axis astigmatism) to a 

minimum. 

 

 

Figure 6-3.  The Monk-Gillieson mount.  A plane grating is used in converging light. 

                                                             
43 W. G. Fastie, “A small plane grating monochromator,” J. Opt. Soc. Am. 42, 641-647 
(1952); W. G. Fastie, “Image forming properties of the Ebert monochromator,” J. Opt. Soc. 
Am. 42, 647-652 (1952). 

44 G. S. Monk, “A mounting for the plane grating,” J. Opt. Soc. Am. 17, 358 (1928);  A. 
Gillieson, “A new spectrographic diffraction grating monochromator,” J. Sci. Instr. 26, 
334-339 (1949);  T. Kaneko, T. Namioka and M. Seya, “Monk-Gillieson monochromator,” 
Appl. Opt. 10, 367-381 (1971);  M. Koike and T. Namioka, “Grazing-incidence Monk-
Gillieson monochromator based on surface normal rotation of a varied line-spacing 
grating,” Appl. Opt. 41, 245-257 (2002). 
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 Since the incident light is not collimated, the grating introduces 

wavelength-dependent aberrations into the diffracted wavefronts (see 

Chapter 7).  Consequently, the spectrum cannot remain in focus at a fixed 

exit slit when the grating is rotated (unless this rotation is about an axis 

displaced from the central groove of the grating45).  For low-resolution 

applications, the Monk-Gillieson mount enjoys a certain amount of 

popularity, since it represents the simplest and least expensive 

spectrometric system imaginable. 

6.2.4. The Littrow monochromator46 

 A grating used in the Littrow or autocollimating configuration 

diffracts light of wavelength  back along the incident light direction 

(Figure 6-4).  In a Littrow monochromator, the spectrum is scanned by 

rotating the grating; this reorients the grating normal, so the angles of in-

cidence  and diffraction  change (even though  =  for all ).  The 

same auxiliary optics can be used as both collimator and camera, since 

the diffracted rays retrace the incident rays.  Usually the entrance slit and 

exit slit (or image plane) will be offset slightly along the direction parallel 

to the grooves so that they do not coincide; this will generally introduce 

out-of-plane aberrations.  True Littrow monochromators are quite 

popular in laser tuning applications (see Chapter 13). 

6.2.5. Double & triple monochromators47 

 Two monochromator mounts used in series form a double 

monochromator.  The exit slit of the first monochromator usually serves 

as the entrance slit for the second monochromator (see Figure 6-5), 

though some systems have been designed without an intermediate slit.  

Stray light in a double monochromator with an intermediate slit is much 

lower than in a single monochromator: it is approximately the product of 

ratios of stray light intensity to parent line intensity for each single 

monochromator.   

                                                             
45 D. J. Schroeder, "Optimization of converging-beam grating monochromators," J. Opt. 
Soc. Am. 60, 1022 (1970). 

46 J. F. James and R. S. Sternberg, The Design of Optical Spectrometers, Chapman and 
Hall (London: 1969);  R. Masters, C. Hslech and H. L. Pardue, “Advantages of an off-
Littrow mounting of an echelle grating,” Appl. Opt. 27, 3895-3897 (1988). 

47 R. L. Christensen and R. J. Potter, “Double monochromator systems,” Appl. Opt. 2, 
1049-1054 (1963);  F. R. Lipsett, G. Oblinsky and S. Johnson, “Varioilluminator 
(subtractive double monochromator with variable bandpass),” Appl. Opt. 12, 818 (1973). 
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Figure 6-4.  The Littrow monochromator mount.  The entrance and exit slits are slightly 

above and below the dispersion plane, respectively; they are shown separated for clarity. 

 A double monochromator may be designed to have either additive 

dispersion or subtractive dispersion.   

• In the case of additive dispersion, the reciprocal linear dispersion 

of the entire system is the sum of the reciprocal linear 

dispersions of each monochromator: that is, the spectrum that is 

dispersed by the first monochromator is further dispersed in 

passing through the second monochromator.   

• In the case of subtractive dispersion, the entire system is 

designed so that the spectral dispersion at the exit slit of the 

second monochromator is essentially zero.  A subtractive-

dispersion monochromator has the property that the light leaving 

its exit slit is spectrally uniform: the homogeneous combination 

of all wavelengths is transmitted through the intermediate slit, 

instead of a spectrum of continuous varying wavelength as seen 

in single monochromators and additive-dispersion double 

monochromators.  Such instruments have found use in Raman 

spectroscopy systems (in which spectral features very close to the 

exciting laser wavelength can be observed), and in fluorescence 

and luminescence excitation.48 

 

                                                             
48 F. R. Lipsett, G. Bechtold, F. D. Blair, F. V. Cairns and D. H. O’Hara, “Apparatus for 
measurement of luminescence spectra with a digital recording system,” Appl. Opt. 9, 1312 
(1970); R. L. McCreery, Raman Spectroscopy for Chemical Analysis, Wiley-Interscience 
(New York, New York: 2000), pp. 168 ff. 
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Figure 6-5.  A double monochromator mount.  An intermediate slit between the two 

monochromators is shown. 

 A triple monochromator mount consists of three monochromators in 

series.  These mounts are used when the demands to reduce instrumental 

stray light are extraordinarily severe.49 

6.2.6. The constant-scan monochromator 

 The vast majority of monochromator mounts are of the constant 

deviation variety: the grating is rotated to bring different wavelengths 

into focus at the (stationary) exit slit.  This mount has the practical 

advantage of requiring a single rotation stage and no other moving parts, 

but it has the disadvantage of being “on blaze” at only one wavelength – 

at other wavelengths, the incidence and diffraction angles do not satisfy 

the blaze condition  

  m= d (sin + sin) = 2dsinB, (2-30) 

                                                             
49 A. Walsh and J. B. Willis, “Multiple monochromators. IV. A triple monochromator and 
its application to near infrared, visible and ultraviolet spectroscopy,” J. Opt. Soc. Am. 43, 
989-993 (1953). 
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where B is the facet angle. 

 An alternative design that may be considered is the constant-scan 

monochromator, so called because in the grating equation 

  m= 2d cosK sin (2-8) 

it is the scan angle rather than the half-deviation angle K that remains 

fixed.   In this mount, the bisector of the entrance and exit arms must 

remain at a constant angle to the grating normal as the wavelengths are 

scanned; the angle 2K() = ()() between the two arms must 

expand and contract to change wavelength. 

 Constant-scan plane grating monochromators have been designed50 

but have not been widely adopted, due to the complexity of the required 

mechanisms for the precise movement of the slits.  Hunter described a 

constant-scan monochromator for the vacuum ultraviolet in which the 

entrance and exit slits moved along the Rowland circle (see Section 7.2 

below).51  The imaging properties of the constant-scan monochromator 

with fixed entrance and exit arms have not been fully explored, but since 

each wavelength remains on blaze, there may be applications where this 

design proves advantageous.   [As noted in Section 2.8, though, the 

efficiency will drop as 2K increases, i.e. as the monochromator is used 

farther off-Littrow.] 

6.3. PLANE GRATING SPECTROGRAPH MOUNTS52 

 The plane grating monochromator mounts described in Section 6.2 

have an exit slit through which a narrow spectral region passes; the 

center wavelength of this spectra region is changed by rotating the 

grating.  Alternatively, a wide spectral region can be imaged at once by 

                                                             
50 C. Kunz, R. Haensel and B. Sonntag, “Grazing-incidence vacuum-ultraviolet 
monochromator with fixed exit slit for use with distant sources,” J. Opt. Soc. Am. 58, 1415 
(1968);  H. Deitrich and C. Kunz, “A grazing incidence vacuum ultraviolet monochromator 
with fixed exit slit,” Rev. Sci. Inst. 43, 434-442 (1972). 

51 W. R. Hunter, “On-blaze scanning monochromator for the vacuum ultraviolet,” Appl. 
Opt. 21 1634-1642 (1982);  W. R. Hunter and J. C. Rife, “Higher-order suppression in an 
on-blaze plane-grating monochromator,” Appl. Opt. 23, 293-299 (1984). 

52 R. F. Jarrell, “Stigmatic plane grating spectrograph with order sorter,” J. Opt. Soc. Am. 
45, 259-269 (1955);  J. Reader, “Optimizing Czerny-Turner spectrographs: a comparison 
between analytic theory and ray tracing,” J. Opt. Am. Soc. 59, 1189-1196 (1969);  M. A. Gil, 
J. M. Simon and A. N. Fantino, “Czerny-Turner spectrograph with a wide spectral range,” 
Appl. Opt. 27, 4069-4072 (1988);  N. C. Das, “Aberration properties of a Czerny-Turner 
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leaving the grating fixed and using a series of exits slits (or an array of 

detector elements) in a focal plane.  Such optical systems are called 

spectrographs. 

 Often the imaging properties of a plane grating spectrograph (with no 

auxiliary optics) are acceptable over only a portion of the spectrum of 

interest, which requires the use of additional lenses or mirrors to provide 

additional focusing power to render the focal curve as close to the line (or 

curve) represented by the slits or detector array. 

 

                                                                                                                                        
spectrograph using plane-holographic diffraction grating,” Appl. Opt. 30, 3589-3597 
(1991). 
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7. CONCAVE GRATINGS AND THEIR 

MOUNTS   
7.0. INTRODUCTION 

 A concave reflection grating can be modeled as a concave mirror that 

disperses; it can be thought to reflect and focus light by virtue of its con-

cavity, and to disperse light by virtue of its groove pattern.  The groove 

pattern can also contribute to focusing for an aberration-reduced 

concave grating. 

 Since their invention by Henry Rowland over one hundred years 

ago,53 concave diffraction gratings have played an important role in 

spectrometry.  Compared with plane gratings, they offer one important 

advantage: they provide the focusing (imaging) properties to the grating 

that otherwise must be supplied by separate optical elements.  For 

spectroscopy below 110 nm, for which the reflectivity of available mirror 

coatings is low, concave gratings allow for systems free from focusing 

mirrors that would reduce throughput two or more orders of magnitude. 

 Many configurations for concave spectrometers have been designed.  

Some are variations of the Rowland circle, while some place the spectrum 

on a flat field, which is more suitable for charge-coupled device (CCD) 

array instruments.  The Seya-Namioka concave grating monochromator 

is especially suited for scanning the spectrum by rotating the grating 

around its own axis. 

7.1. CLASSIFICATION OF GRATING TYPES 

 The imaging characteristics of a concave grating system are governed 

by the size, location and orientation of the entrance and exit optics (the 

mount), the aberrations due to the grating, and the aberrations due to 

any auxiliary optics in the system.  [In this chapter we address only 

simple systems, in which the concave grating is the single optical ele-

ment; auxiliary mirrors and lenses are not considered.]  The imaging 

properties of the grating itself are determined completely by the shape of 

its substrate (its curvature or figure) and the spacing and curvature of 

the grooves (its groove pattern). 

                                                             
53 H. A. Rowland, “Preliminary notice of the results accomplished in the manufacture and 
theory of gratings for optical purposes,” Philos. Mag. 13, 469 (1882). 
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 Gratings are classified both by their groove patterns and by their 

substrate curvatures.  In Chapter 6, we restricted our attention to plane 

classical gratings and their mounts.  In this chapter, more general 

gratings and grating systems are considered.  

7.1.1. Groove patterns 

 A classical grating is one whose grooves, when projected onto the 

tangent plane, form a set of straight equally-spaced lines.  Until the 

1980s, the vast majority of gratings were classical, in that any departure 

from uniform spacing, groove parallelism or groove straightness was 

considered a flaw.  Classical gratings are made routinely both by 

mechanical ruling and interferometric (holographic) recording. 

 A first generation holographic grating has its grooves formed by the 

intersection of a family of confocal hyperboloids (or ellipsoids) with the 

grating substrate.  When projected onto the tangent plane, these grooves 

have both unequal spacing and curvature.  First generation holographic 

gratings are formed by recording the master grating in a field generated 

by two sets of spherical wavefronts, each of which may emanate from a 

point source or be focused toward a virtual point. 

 A second generation holographic grating has the light from its point 

sources reflected by concave mirrors (or transmitted through lenses) so 

that the recording wavefronts are toroidal.54 

 A varied line-space (VLS) grating is one whose grooves, when 

projected onto the tangent plane, form a set of straight parallel lines 

whose spacing varies from groove to groove.  Varying the groove spacing 

across the surface of the grating moves the tangential focal curve, while 

keeping the groove straight and parallel keeps the sagittal focal curve 

fixed.* 

7.1.2. Substrate (blank) shapes 

 A concave grating is one whose surface is concave, regardless of its 

groove pattern or profile, or the mount in which it is used.  Examples are 

spherical substrates (whose surfaces are portions of a sphere, which are 

definable with one radius) and toroidal substrates (definable by two 

                                                             
54 C. Palmer, “Theory of second-generation holographic diffraction gratings,” J. Opt. Soc. 
Am. 6, 1175-1188 (1989);  T. Namioka and M. Koike, “Aspheric wavefront recording optics 
for holographic gratings,” Appl. Opt. 34, 2180-2186 (1995). 

* The tangential and sagittal focal curves are defined in Section 7.1.2 below. 



 

81 

 

radii).  Spherical substrates are by far the most common type of concave 

substrates, since they are easily manufactured and toleranced, and can be 

replicated in a straightforward manner.  Toroidal substrates are much 

more difficult to align, tolerance and replicate, but astigmatism (see 

below) can generally be corrected better than by using a spherical 

substrate.55  More general substrate shapes are also possible, such as 

ellipsoidal or paraboloidal substrates56, but tolerancing and replication 

complications relegate these grating surfaces out of the mainstream.  

Moreover, the use of aspheric substrates whose surfaces are more general 

than those of the toroid do not provide any additional design freedom for 

the two lowest-order aberrations (defocus and astigmatism; see below)57; 

consequently, there have been very few cases in commercial 

instrumentation for which the improved imaging due to aspheric 

substrates has been worth the cost. 

 The shape of a concave grating (considering only spheres & toriods) 

can be characterized either by its radii or its curvatures. The radii of the 

slice of the substrate in the principal (dispersion) plane is called the 

tangential radius R, while that in the plane parallel to the grooves at the 

grating center is called the sagittal radius .  Equivalently, we can define 

the tangential curvature 1/R and the sagittal curvature 1/.  For a 

spherical substrate, R = . 

 A plane grating is one whose surface is planar.  While plane gratings 

can be thought of as a special case of concave gratings (for which the radii 

of curvature of the substrate become infinite), we treat them separately 

here (see the previous chapter).  In the equations that follow, the case of a 

plane grating is found simply by letting R (and )  . 

7.2. CLASSICAL CONCAVE GRATING IMAGING 

 In Figure 7-1, a classical grating is shown; the Cartesian axes are 

defined as follows: the x-axis is the outward grating normal to the 

grating surface at its center (point O), the y-axis is tangent to the grating 

surface at O and perpendicular to the grooves there, and the z-axis 

                                                             
55 H. Haber, “The torus grating,” J. Opt. Soc. Am. 40, 153-165 (1950). 

56 T. Namioka, “Theory of the ellipsoidal concave grating. I,” J. Opt. Soc. Am. 51, 4-12 
(1961). 

57 C. Palmer, “Limitations of aberration correction in spectrometer imaging,” Proc. SPIE 
1055, 359-369 (1989). 
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completes the right-handed triad of axes (and is therefore parallel to the 

grooves at O). Light from point source A(, , 0) is incident on a grating 

at point O; light of wavelength  in order m is diffracted toward point 

B(', ', 0).  Since point A was assumed, for simplicity, to lie in the xy 

plane, to which the grooves are perpendicular at point O, the image point 

B will lie in this plane as well; this plane is called the principal plane 

(also called the tangential plane or the dispersion plane (see Figure 7-2).  

Ideally, any point P(x, y, z) located on the grating surface will also diffract 

light from A to B. 

  

 

Figure 7-1.  Grating geometry of use.  The grating surface centered at O diffracts light from 

point A to point B.  P is a general point on the grating surface.  The x-axis points out of the 

grating from its center, the z-axis points along the central groove, and the y-axis completes 

the right-handed triad. 

 The plane through points O and B perpendicular to the principal 

plane is called the sagittal plane, which is unique for this wavelength.  

The grating tangent plane is the plane tangent to the grating surface at 

its center point O (i.e., the yz plane).  The imaging effects of the groove 

spacing and curvature can be completely separated from those due to the 

curvature of the substrate if the groove pattern is projected onto this 

plane. 

 The imaging of this optical system can be investigated by considering 

the optical path difference OPD between the pole ray AOB (where O is 

the center of the grating) and the general ray APB (where P is an 

arbitrary point on the grating surface).  Application of Fermat's principle 

to this path difference, and the subsequent expansion of the results in 

power series of the coordinates of the tangent plane (y and z), yields 

expressions for the aberrations of the system. 
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Figure 7-2.  Geometry of use – the principal plane.  Points A, B and O lie in the xy 

(principal) plane; the general point P on the grating surface may lie outside this plane.  The 

z-axis comes out of the page at O. 

 The optical path difference is 

  OPD = <APB> – <AOB> + Nm, (7-1) 

where <APB> and <AOB> are the geometric lengths of the general and 

pole rays, respectively (both multiplied by the index of refraction), m is 

the diffraction order, and N is the number of grooves on the grating 

surface between points O and P.  The last term in Eq. (7-1) accounts for 

the fact that the distances <APB> and <AOB> need not be exactly equal 

for the light along both rays to be in phase at B: due to the wave nature of 

light, the light is in phase at B even if there are an integral number of 

wavelengths between these two distances.  If points O and P are one 

groove apart (N = 1), the number of wavelengths in the difference <APB> 

– <AOB> determines the order of diffraction m. 

 From geometric considerations, we find 

   <APB>  =  <AP> + <PB> 

  =         222222
zyxzyx   , (7-2) 

and similarly for <AOB>, if the medium of propagation is air (n ≈ 1).  The 

optical path difference can be expressed more simply if the coordinates of 

points A and B are plane polar rather than Cartesian: letting 

  <AO> = r,     <OB> = r', (7-3) 

we may write 

   = r cos,      = r sin;   

   (7-4) 

  ' = r' cos,     ' = r' sin,  
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where the angles of incidence and diffraction  and  follow the sign 

convention described in Chapter 2. 

 The power series for OPD can be written in terms of the grating 

surface point coordinates y and z: 

  OPD=  






0 0i j

ji
ij zyF , (7-5) 

where Fij, the expansion coefficient of the (i,j) term, describes how the 

rays (or wavefronts) diffracted from point P toward the ideal image point 

B differ (in direction, or curvature, etc.) in proportion to ji zy  from those 

from point O.  The x-dependence of OPD has been suppressed by writing 

  x = x(y,z) =  






0 0i j

ji
ij zya . (7-6) 

This equation makes use of the fact that the grating surface is usually a 

regular function of position, so x is not independent of y and z (e.g., if it is 

a spherical surface of radius R, then   2222
RzyRx  ). 

 By analogy with the terminology of lens and mirror optics, we call 

each term in series (7-5) an aberration, and Fij its aberration coefficient.  

An aberration is absent from the image of a given wavelength (in a given 

diffraction order) if its associated coefficient Fij is zero. 

 Since we have imposed a plane of symmetry on the system (the 

principal (xy) plane), all terms Fij for which j is odd vanish.  Moreover, 

F00 = 0, since the expansion (7-5) is about the origin O.  The lowest- 

(first-) order terms F10 and F01 in the expansion must equal zero in 

accordance with Fermat’s principle.  Setting F10 = 0 yields the grating 

equation: 

  m= d (sin + sin). (2-1) 

By Fermat's principle, we may take this equation to be satisfied for all 

images. Setting F01 = 0 yields the law of reflection in the plane 

perpendicular to the dispersion plane.  Thus, the second-order aberration 

terms F20 and F02 are those of lowest order that need not necessarily van-

ish.   

 The generally accepted terminology is that a stigmatic image has 

vanishing second-order coefficients even if higher-order aberrations are 

still present.  The second order terms describe the tangential and sagittal 

focusing:  
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  S(r, ) + S(r', ). (7-8) 

The coefficient F20 governs the tangential (or spectral) focusing of the 

grating system, while F02 governs the sagittal focusing.  The associated 

aberrations are called defocus and astigmatism, respectively.  These 

equations may be seen to be generalizations of the Coddington equations 

that describe the second-order focal properties of an aspheric mirror.58  A 

procedure for constructing stigmatic points in a grating system is given 

by Güther and Polze.59 

 The two second-order aberrations describe the extent of a 

monochromatic image: defocus pertains to the blurring of the image – its 

extent of the image along the dispersion direction (i.e., in the tangential 

plane).  Astigmatism pertains to the extent of the image in the direction 

perpendicular to the dispersion direction.  In more common (but 

sometimes misleading) terminology, defocus applies to the "width" of the 

image in the spectral (dispersion) direction, and astigmatism applies to 

the "height" of the spectral image; these terms imply that the xy 

(tangential) plane be considered as horizontal and the yz (sagittal) plane 

as vertical. 

 Actually, astigmatism more correctly defines the condition in which 

the tangential and sagittal foci are not coincident, which implies a line 

image at the tangential focus.  It is a general result of the off-axis use of a 

concave mirror (and, by extension, a concave reflection grating as well).  

A complete three-dimensional treatment of the optical path difference 

[see Eq. (7.1)] shows that the image is actually a conical arc; image points 

away from the center of the ideal image are diffracted toward the longer 

wavelengths.  This effect, which technically is not an aberration, is called 

(spectral) line curvature, and is most noticeable in the spectra of 

Paschen-Runge mounts (see later in this chapter).60  Figure 7-3 shows 

                                                             
58 W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 2000), p. 317. 

59 R. Güther & S. Polze, “The Construction of Stigmatic Points for Concave Gratings”, 
Optica Acta 29, 659-665 (1982). 

60 M. C. Hutley, Diffraction Gratings, Academic Press (New York, 1970), pp. 224 ff. 
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astigmatism in the image of a wavelength diffracted off-axis from a 

concave grating, ignoring line curvature. 

 Since grating images are generally astigmatic, the focal distances r' in 

Eqs. (7-7) and (7-8) should be distinguished. Calling r'T and r'S the 

tangential and sagittal focal distances, respectively, we may set these 

equations equal to zero and solve for the focal curves r'T() and r'S(): 

  r'T()= 




cos

cos2

BA 
, (7-9) 

  r'S()= 
cos

1

ED 
. (7-10) 

 

 

Figure 7-3.  Astigmatic focusing of a concave grating.   Light from point A is focused into a 

line parallel to the grooves at TF (the tangential focus) and perpendicular to the grooves at 

SF (the sagittal focus).  Spectral resolution is maximized at TF. 

Here we have defined  

  A  =  B cos 
r

2cos
 ,      B  =  2 a20,  

   (7-11) 

  D  =  E cos 
r

1
 ,      E  =  2 a02,  

where a20 and a02 are the coefficients in Eq. (7-6) (e.g., a20 = a02 = 1/(2R) 

for a spherical grating of radius R).  Eqs. (7-9) and (7-10) are completely 

general for classical grating systems: they apply to any type of grating 

mount or configuration. 

 Of the two primary (second-order) focal curves, that corresponding 

to defocus (F20) is of greater importance in spectroscopy, since it is 

spectral resolution that is most crucial to grating systems.  For this 
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reason, we do not concern ourselves with locating the image plane at the 

"circle of least confusion"; rather, we try to place the image plane at or 

near the tangential focus (where F20 = 0).  For concave gratings (a20 ≠ 0), 

there are two well-known solutions to the defocus equation F20 = 0: those 

of Rowland and Wadsworth. 

 The Rowland circle is a circle whose diameter is equal to the 

tangential radius of the grating substrate, and which passes through the 

grating center (point O in Figure 7-5).  If the point source A is placed on 

this circle, the tangential focal curve also lies on this circle.  This solution 

is the basis for the Rowland circle and Paschen-Runge mounts.  For the 

Rowland circle mount, 

  r = 
202

cos

a


= R cos,  

   (7-12) 

  r'T =  
202

cos

a


= R cos  

The sagittal focal curve is  

  r'S = 

1

cos

1coscos


















R
 (7-13) 

(where  is the sagittal radius of the grating), which is always greater than 

r'T (even for a spherical substrate, for which  = R) unless  =  = 0.  

Consequently, this mount suffers from astigmatism, which in some cases 

is considerable. 

 The Wadsworth mount is one in which the incident light is 

collimated (r   ∞), so that the tangential focal curve is given by 

  r'T = 
 



coscos2

cos

20

2

a
  = 





coscos

cos2



R
, (7-14) 

and the sagittal focal curve is  

  r'S = 
  coscos2

1

02 a
  = 





coscos 
. (7-15) 

In this mount, the imaging from a classical spherical grating ( = R) is 

such that the astigmatism of the image is zero only for  = 0, though this 

is true for any incidence angle . 
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 While higher-order aberrations are usually of less importance than 

defocus and astigmatism, they can be significant.  The third-order 

aberrations, primary or tangential coma F30 and secondary or sagittal 

coma F12, are given by 

  F30= 
r

sin
 T(r, ) + 

r 

sin
 T(r', ) – a30 (cos + cos) ,  (7-16) 

  F12= 
r

sin
 S(r, ) + 

r 

sin
 S(r', ) – a12 (cos + cos) ,  (7-17) 

where T and S are defined in Eqs. (7-7) and (7-8).  Often one or both of 

these third-order aberrations is significant in a spectral image and must 

be minimized with the second-order aberrations. 

7.3. NONCLASSICAL CONCAVE GRATING IMAGING 

 For nonclassical groove patterns, the aberration coefficients Fij must 

be generalized to account for the image-modifying effects of the 

variations in curvature and spacing of the grooves, as well as for the 

focusing effects of the concave substrate: 

  Fij  = Mij  + 
0

m
 Hij   Mij  + H'ij . (7-18) 

The terms Mij are simply those Fij coefficients for classical concave 

grating mounts, discussed in Section 7.2 above.  The H'ij coefficients 

describe how the groove pattern differs from that of a classical grating 

(for classical gratings, H'ij = 0 for all terms of order two or higher (i + j ≥ 

2)).  The tangential and sagittal focal distances (Eqs. (7-9) and (7-10)) 

must now be generalized: 

  r'T()=




sincos

cos2

CBA 
, (7-19) 

  r'S()=
 sincos

1

FED 
, (7-20) 

where in addition to Eqs. (7-11) we have 

  C  =  – 2 H'20,      F  =  – 2 H'02. (7-21) 

Here H'20 and H'02 are the terms that govern the effect of the groove 

pattern on the tangential and sagittal focusing.  For a first generation 
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holographic grating, for example, the Hij coefficients may be written in 

terms of the parameters of the recording geometry (see Figure 7-4): 

  H'20= – T(rC, ) + T(rD, ), (7-22) 

  H'02= – S(rC, ) + S(rD, ), (7-23) 

where C(rC, ) and D(rD, ) are the plane polar coordinates of the 

recording points.      These equations are quite similar to Eqs. (7-7) and 

(7-8), due to the similarity between Figures 7-4 and 7-2. 

 

 

Figure 7-4.  Recording parameters for a concave holographic grating.  Spherical waves 

emanate from point sources C and D; the interference pattern forms fringes on the concave 

substrate centered at O. 

 Nonclassical concave gratings are generally produced 

holographically, but for certain applications, they can be made by 

mechanical ruling as well, by changing the groove spacing from one 

groove to the next during ruling61, by curving the grooves62, or both.63  

For such varied line-space (VLS) gratings (see Chapter 4), the terms Hij 

                                                             
61 Y. Sakayanagi, “A stigmatic concave gating with varying spacing,” Sci. Light 16, 129-137 
(1967). 

62 Y. Sakayanagi, Sci. Light 3, 1 (1954). 

63 T. Harada, S. Moriyama and T. Kita, “Mechanically ruled stigmatic concave gratings,” 
Japan. J. Appl. Phys. 14, 175-179 (1974). 
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are written in terms of the groove spacing coefficients rather than in 

terms of recording coordinates.64 

 Several important conclusions may be drawn from the formalism 

developed above for grating system imaging.65 

• The imaging effects of the shape of the grating substrate 

(manifest in the coefficients aij) and the groove pattern (manifest 

in the coefficients Hij) are completely separable.   

• The imaging effects of the shape of the grating substrate are 

contained completely in terms that are formally identical to those 

for the identical mirrors substrate, except that the diffraction 

angle is given by the grating equation (Eq. (2-1)) rather than the 

law of reflection. 

• The imaging effects of the groove pattern are dictated completely 

by the spacing and curvature of the grooves when projected onto 

the plane tangent to the grating surface at its center. 

• The y-dependence of the groove pattern governs the local groove 

spacing, which in turn governs the tangential aberrations of the 

system. 

• The z-dependence of the groove pattern governs the local groove 

curvature, which in turn governs the sagittal aberrations of the 

system. 

 More details on the imaging properties of gratings systems can be 

found in Namioka66and Noda et al.67 

7.4. REDUCTION OF ABERRATIONS 

 In the design of grating systems, there exist several degrees of 

freedom whose values may be chosen to optimize image quality.  For 

monochromators, the locations of the entrance slit A and exit slit B 

relative to the grating center O provide three degrees of freedom (or four, 

if no plane of symmetry is imposed); the missing degree of freedom is 

                                                             
64 C. Palmer and W. R. McKinney, "Equivalence of focusing conditions for holographic and 
varied line-space gratings," Appl. Opt. 29, 47-51 (1990). 

65 C. Palmer and W. R. McKinney, "Imaging theory of plane-symmetric varied line-space 
grating systems," Opt. Eng. 33, 820-829 (1994). 

66 T. Namioka, "Theory of the concave grating," J. Opt. Soc. Am. 49, 446 (1959). 

67 H. Noda, T. Namioka and M. Seya, "Geometric theory of the grating," J. Opt. Soc. Am. 
64, 1031-1036 (1974). 
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restricted by the grating equation, which sets the angular relationship 

between the lines AO and BO.  For spectrographs, the location of the 

entrance slit A as well as the location, orientation and curvature of the 

image field provide degrees of freedom (though the grating equation 

must be satisfied).  In addition, the curvature of the grating substrate 

provides freedom, and the aberration coefficients H'ij for a holographic 

grating (or the equivalent terms for a VLS grating) can be chosen to 

improve imaging.  Even in systems for which the grating use geometry 

(the mount) has been specified, there exist several degrees of freedom 

due to the aberration reduction possibilities of the grating itself. 

 Algebraic techniques can find sets of design parameter values that 

minimize image size at one or two wavelengths, but to optimize the 

imaging of an entire spectral range is usually so complicated that 

computer implementation of a design procedure is essential.  MKS has 

developed a set of proprietary computer programs to design and analyze 

grating systems.  These programs allow selected sets of parameter values 

governing the use and recording geometries to vary within prescribed 

limits.  Optimal imaging is found by comparing the imaging properties 

for systems with different sets of parameters values. 

 Design techniques for grating systems that minimize aberrations may 

be classified into two groups: those that consider wavefront aberrations 

and those that consider ray deviations.  The wavefront aberration theory 

of grating systems was developed by Beutler68 and Namioka69, and was 

presented in Section 7.2.  The latter group contains both the familiar 

raytrace techniques used in commercial optical design software and the 

Lie aberration theory developed by Dragt.70  The principles of optical 

raytrace techniques are widely known and taught in college courses, and 

are the basis of a number of commercially-available optical design 

software packages, so they will not be addressed here, but the concepts of 

                                                             
68 H. G. Beutler, "The theory of the concave grating,” J. Opt. Soc. Am. 35, 311-350 (1945). 

69 T.  Namioka, "Theory of the concave grating,” J. Opt. Soc. Am. 49, 446-460 (1959). 

70 A. J. Dragt, "Lie algebraic theory of geometrical optics and optical aberrations,” J. Opt. 
Soc. Am. 72, 372-379 (1982);  K. Goto and T. Kurosaki, "Canonical formulation for the 
geometrical optics of concave gratings,” J. Opt. Soc. Am. A10, 452-465 (1993);  C. Palmer, 
W. R. McKinney and B. Wheeler, "Imaging equations for spectroscopic systems using Lie 
Transformations.  Part I – Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998);  C. 
Palmer, B. Wheeler and W. R. McKinney, "Imaging equations for spectroscopic systems 
using Lie transformations. Part II - Multi-element systems," Proc. SPIE 3450, 67-77 
(1998). 
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Lie aberration theory are not widely known – for the interested reader 

they are summarized in Appendix B.   

 Design algorithms generally identify a merit function, an expression 

that returns a single value for any set of design parameter arguments; 

this allows two different sets of design parameter values to be compared 

quantitatively.  Generally, merit functions are designed so that lower 

values correspond to better designs – that is, the ideal figure of merit is 

zero.   

 For grating system design, several merit functions may be defined.  

The MKS proprietary design software uses the function 

  M = w’ch’, (7-24) 

where w’ and h’ are the width (in the dispersion plane) and height 

(perpendicular to the dispersion plane) of the image, and c is a constant 

weighting factor.71   Minimizing M therefore reduces both the width and 

the height of the diffracted image.  Since image width (which affects 

spectral resolution) is almost always more important to reduce than 

image height, c is generally chosen to be much less than unity.  If w’ is 

expressed not as a geometric width (say, in millimeters) but a spectral 

width (in nanometers), then M will have these units as well; since h’ is in 

millimeters (there being no dispersion in the direction in which h’ is 

measured), c will have the units of reciprocal linear dispersion (e.g., 

nm/mm) but it is not a measure of reciprocal linear dispersion – c is 

merely a weighting factor introduced in Eq. (7-24) to ensure that image 

width and image height are properly weighted in the optimization 

routine. 

 For optimization over a spectral range 1    2, Eq. (7-24) can be 

generalized to define the merit function as the maximum value of w’  ch’ 

over all wavelengths: 

  M =     


hcw sup , (7-25) 

where the supremum function sup{} returns the maximum value of all of 

its arguments.  Defining a merit function in the form of Eq. (7-25) 

minimizes the maximum value of w’  ch’ over all wavelengths 

considered.  [A more general form would allow the weighting factor to be 

                                                             
71 W. R. McKinney and C. Palmer, "Numerical design method for aberration-reduced 
concave grating spectrometers,” Appl. Opt. 26, 3018-3118 (1987). 
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wavelength-specific, i.e., c  c(), and an even more general form would 

allow for wavelength-dependent weighting factors for w() as well.] 

 Eqs. (7-24) and (7-25) consider the ray deviations in the image plane, 

determined either by direct ray tracing or by converting wavefront 

aberrations into ray deviations.  An alternative merit function may be 

defined using Eqs. (7-19) and (7-20), the expressions for the tangential 

and sagittal focal distances.  Following Schroeder72, we define the 

quantity  as 

   = 
    ST

11

rr 



, (7-26) 

leading to the following merit function: 

  M =   


Δsup . (7-27) 

This version of M will consider second-order aberrations only (i.e., F20 

(defocus) and F02 (astigmatism)) to minimize the distances between the 

tangential and sagittal focal curves for each wavelength in the spectrum.73 

 Noda et al.74 have suggested using as the merit function the integral 

of the square of an aberration coefficient, 

  M =   2d 



ijF , (7-28) 

where the integration is over the spectrum of interest (1    2).  

Choosing defocus (F20) as the aberration term would, however, not 

require the design routine to minimize astigmatism as well.  A number N 

of aberrations may be considered, but this requires the simultaneous 

minimization of N merit functions of the form given by Eq. (7-28).75 

                                                             
72 D. J. Schroeder, Astronomical Optics (Academic Press, New York, 1987), pp. 64 & 263. 

73 C. Palmer, "Deviation of second-order focal curves in common plane-symmetric 
spectrometer mounts,” J. Opt. Soc Am. A7, 1770-1778 (1990). 

74 H. Noda, T. Namioka and M. Seya, "Geometric theory of the grating,” J. Opt. Soc Am. 
64, 1031-1036 (1974). 

75 E. Sokolova, B. Kruizinga and I. Gulobenko, “Recording of concave diffraction gratings 
in a two-step process using spatially incoherent light,” Opt. Eng. 43, 2613-2622 (2004). 



 

94 

 

 Two other merit functions have been used in the design of 

spectrometer systems are the Strehl ratio76 and the quality factor.77 

7.5. CONCAVE GRATING MOUNTS 

 As with plane grating mounts, concave grating mounts can be either 

monochromators or spectrographs.  

7.5.1. The Rowland circle spectrograph 

 The first concave gratings of spectroscopic quality were ruled by 

Rowland, who also designing their first mounting.  Placing the ideal 

source point on the Rowland circle (see Eqs. (7-12) and Figure 7-5) forms 

spectra on that circle free from defocus and primary coma at all 

wavelengths (i.e., F20 = F30 = 0 for all ); while spherical aberration is 

residual and small, astigmatism is usually severe. Originally a Rowland 

circle spectrograph employed a photographic plate bent along a circular 

arc on the Rowland circle to record the spectrum in its entirety.   

 Today it is more common for a series of exit slits to be cut into a 

circular mask to allow the recording of several discrete wavelengths 

photoelectrically; this system is called the Paschen-Runge mount.  Other 

configurations based on the imaging properties of the Rowland circle are 

the Eagle mount and the Abney mount, both of which are described by 

Hutley78 and by Meltzer.79 

 Unless the exit slits (or photographic plates) are considerably taller 

than the entrance slit, the astigmatism of Rowland circle mounts usually 

prevents more than a small fraction of the diffracted light from being 

recorded, which greatly decreases the efficiency of the instrument.  

Increasing the exit slit heights helps collect more light, but since the 

images are curved, the exit slits would have to be curved as well to 

maintain optimal resolution.  To complicate matters further, this 

curvature depends on the diffracted wavelength, so each exit slit would 

                                                             
76 W. T. Welford, “Aberration tolerances for spectrum line images,” Opt. Acta 10, 121-127 
(1963). 

77 M. Pouey, “Comparison between far ultraviolet spectrometers,” Opt. Commun. 2, 339-
342 (1970). 

78 M. C. Hutley, Diffraction Gratings, Academic Press (New York, 1970). 

79 R. J. Meltzer, "Spectrographs and Monochromators," in Applied Optics and Optical 
Engineering, vol. V (chapter 3), R. Shannon, ed., Academic Press (New York: 1969). 
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require a unique curvature.  Few instruments have gone to such trouble, 

so most Rowland circle grating mounts collect only a small portion of the 

light incident on the grating.  For this reason, these mounts are adequate 

for strong sources (such as the observation of the solar spectrum) but not 

for less intense sources (such as stellar spectra). 

 The imaging properties of instruments based on the Rowland circle 

spectrograph, such as direct readers and atomic absorption instruments, 

can be improved by the use of nonclassical gratings.  By replacing the 

usual concave classical gratings with concave aberration-reduced 

gratings, astigmatism can be improved substantially.  Rowland circle 

mounts modified in this manner direct more diffracted light through the 

exit slits, though often at the expense of degrading resolution to some 

degree.80 

  

 

Figure 7-5.  The Rowland Circle spectrograph.  Both the entrance slit and the diffracted 

spectrum lie on the Rowland circle, whose diameter equals the tangential radius of 

curvature R of the grating and that passes through the grating center.  Light of two 

wavelengths is shown focused at different points on the Rowland circle. 

                                                             
80 B. J. Brown and I. J. Wilson, “Holographic grating aberration correction for a Rowland 
circle mount I,” Opt. Acta (Lond.) 28(12), 1587–1599 (1981); B. J. Brown and I. J. Wilson, 
“Holographic grating aberration correction for a Rowland circle mount II,” Opt. Acta 
(Lond.) 28(12), 1601–1610 (1981); X. Chen and L. Zeng, “Astigmatism-reduced spherical 
concave grating holographically recorded by a cylindrical wave and a plane wave for 
Rowland circle mounting,” Appl. Opt. 57(25), 7281–7286 (2018). 
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7.5.2. The Wadsworth spectrograph 

 When a classical concave grating is illuminated with collimated light 

(rather than from a point source on the Rowland circle), spectral 

astigmatism on and near the grating normal is greatly reduced.  Such a 

grating system is called the Wadsworth mount (see Figure 7-6).81  The 

wavelength-dependent aberrations of the grating are compounded by the 

aberration of the collimating optics, though use of a paraboloidal mirror 

illuminated on-axis will reduce off-axis aberrations and spherical 

aberrations.  The Wadsworth mount suggests itself in situations in which 

the light incident on the grating is naturally collimated (from, for 

example, astronomical sources).  In other cases, an off-axis parabolic 

mirror would serve well as the collimating element. 

7.5.3. Flat-field spectrographs 

 One of the advantages of changing the groove pattern (as on a first- 

or second- generation holographic grating or a VLS grating) is that the 

focal curves can be modified, yielding grating mounts that differ from the 

classical ones.  A logical improvement of this kind on the Rowland circle 

spectrograph is the flat-field spectrograph, in which the tangential focal 

curve is removed from the Rowland circle and rendered nearly linear over 

the spectrum of interest (see Figure 7-7).  While a grating cannot be made 

that images a spectrum perfectly on a line, one that forms a spectrum on 

a sufficiently flat surface is ideal for use in linear detector array 

instruments of moderate resolution.  This development has had a 

significant effect on spectrograph design. 

 The relative displacement between the tangential and sagittal focal 

curves can also be reduced via VLS or interferometric modification of the 

groove pattern.  In this way, the resolution of a flat-field spectrometer can 

be maintained (or improved) while its astigmatism is decreased; the 

latter effect allows more light to be transmitted through the exit slit (or 

onto the detector elements).  An example of the process of aberration 

reduction is shown in Figure 7-8. 

 

                                                             
81 F. Wadsworth, “The modern spectroscope,” Astrophys. J. 3, 47-62 (1896). 
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Figure 7-6.  The Wadsworth spectrograph.  Collimated light is incident on a concave 

grating; light of two wavelengths is shown focused at different points.  GN is the grating 

normal. 

 

Figure 7-7.  A flat-field spectrograph.   The spectrum from 1 to 2 (>1) is shown imaged 

onto a line. 

 

Figure 7-8.  Modification of focal curves.   The primary tangential focal curve (F20 = 0) is 

thick; the primary sagittal focal curve (F02 = 0) is thin.  (a) Focal curves for a classical (H20 

= H02 = 0) concave grating, illuminated off the normal ( ≠ 0) – the dark curve is an arc of 

the Rowland circle.  (b) Choosing a suitable nonzero H20 value moves the tangential focal 

arc so that part of it is nearly linear, suitable for a flat-field spectrograph detector.  (c)  

Choosing a suitable nonzero value of H02 moves the sagittal focal curve so that it crosses 

the tangential focal curve, providing a stigmatic image. 
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7.5.4. Imaging spectrographs and monochromators82 

 Concave gratings may also be used in imaging spectrographs,which 

are instruments for which a spectrum is obtained for different spatial 

regions in the object plane.  For example, an imaging spectrometer may 

generate a two-dimensional spatial image on a detector array, and for 

each such image, a spectrum is scanned (over time); alternatively, a 

spectrum can be recorded for a linear slice of the image, and the slice 

itself can be moved across the image to provide the second spatial 

dimension (sometimes called the “push broom” technique). 

7.5.5. Constant-deviation monochromators 

 In a constant-deviation monochromator, the angle 2K between the 

entrance and exit arms is held constant as the grating is rotated (thus 

scanning the spectrum; see Figure 7-9).  This angle is called the deviation 

angle or angular deviation (AD).  While plane or concave gratings can be 

used in constant-deviation mounts, only in the latter case can imaging be 

made acceptable over an entire spectrum without auxiliary focusing 

optics.    

 The Seya-Namioka monochromator83 is a very special case of 

constant-deviation mount using a classical spherical grating, in which the 

deviation angle 2K between the beams and the entrance and exit slit 

distances (r and r') are given by 

  2K = 70°30',     r = r' = R cos(70°30'/2), (7-29) 

where R is the radius of the spherical grating substrate.  The only moving 

part in this system is the grating, through whose rotation the spectrum is 

scanned.  Resolution may be quite good in part of the spectrum, though it 

degrades farther from the optimal wavelength; astigmatism is high, but at 

an optimum.  Replacing the grating with a classical toroidal grating can 

reduce the astigmatism, if the minor radius of the toroid is chosen judi-

                                                             
82 M. Descour and E. Dereliak, “Computed-tomography imaging spectrometer: 
experimental calibration and reconstruction results,” Appl. Opt. 34, 4817-4826 (1995); P. 
Mouroulis, D. W. Wilson, P. D. Maker and R. E. Muller, “Convex grating types for 
concentric imaging spectrometers,” Appl. Opt. 37, 7200-7028 (1998); M. Beasley, C. 
Boone, N. Cunningham, J. Green and E. Wilkinson, “Imaging spectrograph for interstellar 
shocks: a narrowband imaging payload for the far ultraviolet,” Appl. Opt. 43, 4633-4642 
(2004). 

83 M. Seya, "A new mounting of concave grating suitable for a spectrometer," Science of 
Light 2, 8-17 (1952);  T. Namioka, “Theory of the concave grating. III. Seya-Namioka 
monochromator,” J. Opt. Soc. Am. 49, 951-961 (1959). 
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ciously.  The reduction of astigmatism by suitably designed holographic 

gratings is also helpful, though the best way to optimize the imaging of a 

constant-deviation monochromator is to relax the restrictions given by 

Eqs. (7-29) on the use geometry. 

  

 

Figure 7-9.  Constant-deviation monochromator geometry.   To scan wavelengths, the 

entrance slit A and exit slit B remain fixed as the grating rotates.  The deviation angle 2K is 

measured from the exit arm to the entrance arm.  The Seya-Namioka monochromator is a 

special case for which Eqs. (7-29) are satisfied. 
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 8. IMAGING PROPERTIES OF GRATING 

SYSTEMS   
8.1. CHARACTERIZATION OF IMAGING QUALITY 

 In Chapter 7, we formulated the optical imaging properties of a 

grating system in terms of wavefront aberrations.  After arriving at a 

design, though, this approach is not ideal for observing the imaging 

properties of the system.  Two tools of image analysis – spot diagrams 

and linespread functions – are discussed below. 

8.1.1. Geometric raytracing and spot diagrams 

 Raytracing (using the laws of geometrical optics) is superior to 

wavefront aberration analysis in the determination of image quality.  

Aberration analysis is an approximation to image analysis, since it 

involves expanding quantities in infinite power series and considering 

only a few terms.  Raytracing, on the other hand, does not involve 

approximations, but shows (in the absence of the diffractive effects of 

physical optics) where each ray of light incident on the grating will 

diffract.  It would be more exact to design grating systems with 

a raytracing procedure as well, though to do so would be computationally 

cumbersome. 

 The set of intersections of the diffracted rays and the image plane 

forms a set of points, called a spot diagram.  In Figure 8-1, several simple 

spot diagrams are shown; their horizontal axes are in the plane of 

dispersion (the tangential plane), and their vertical axes are in the sagittal 

plane.  In (a) an uncorrected (out-of-focus) image is shown; (b) shows 

good tangential focusing, and (c) shows virtually point-like imaging.  All 

three of these images are simplistic in that they ignore the effects of line 

curvature as well as higher-order aberrations (such as coma and spherical 

aberration), which render typical spot diagrams asymmetric, as in (d). 

  A straightforward method of evaluating the imaging properties of 

a spectrometer at a given wavelength is to measure the tangential and 

sagittal extent of an image (often called the width w' and height h' of the 

image, respectively), as in Figure 8-2. 

 Geometric raytracing provides spot diagrams in good agreement with 

observed spectrometer images, except for well-focused images, in which  
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Figure 8-1.  Spot diagrams.  In (a) the image is out of focus.  In (b), the image is well 

focused in the tangential plane only; the line curvature inherent to grating-diffracted 

images is shown.  In (c) the image is well focused in both directions – the individual spots 

are not discernible.  In (d) a more realistic image is shown. 

w'

h'

 

Figure 8-2.  Image dimensions.  The width w' and height h' of the image in the image plane 

are the dimensions of the smallest rectangle that contains the spots.  The sides of the 

rectangle are taken to be parallel (w') and perpendicular (h') to the principal plane. 

the wave nature of light dictates a minimum size for the image.  Even if 

the image of a point object is completely without aberrations, it is not a 

point image, due to the diffraction effects of the pupil (which is usually 

the perimeter of the grating).  The minimal image size, called the 

diffraction limit, can be estimated for a given wavelength by the diameter 

a of the Airy disk for a mirror in the same geometry:  

  a= 2.44 ƒ/noOUTPUT= 2.44 
 





cos

'

W

r
. (8-1) 

Here ƒ/noOUTPUT is the output focal ratio, r'() is the focal distance for this 

wavelength, and W is the width of the grating (see Eq. (2-26), Chapter 2).  
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Results from raytrace analyses that use the laws of geometrical optics 

only should not be considered valid if the dimensions of the image are 

found to be near or below the diffraction limit calculated from Eq. (8-1).   

8.1.2. Linespread calculations 

 A fundamental problem with geometric raytracing procedures (other 

than that they ignore the variations in energy density throughout a cross-

section of the diffracted beam and the diffraction efficiency of the grat-

ing) is its ignorance of the effect that the size and shape of the exit 

aperture has on the measured resolution of the instrument. 

 An alternative to merely measuring the extent of a spectral image is 

to compute its linespread function, which is the convolution of the 

(monochromatic) image of the entrance slit with the exit aperture (the 

exit slit in a monochromator, or a detector element in a spectrograph).  A 

close physical equivalent is obtained by scanning the monochromatic 

image by moving the exit aperture past it in the image plane and 

recording the light intensity passing through the slit as a function of 

position in this plane. 

 The linespread calculation thus described accounts for the effect that 

the entrance and exit slit dimensions have on the resolution of the grating 

system. 

8.2. INSTRUMENTAL IMAGING 

 With regard to the imaging of actual optical instruments, it is not 

sufficient to state that ideal performance (in which geometrical aber-

rations are eliminated and the diffraction limit is ignored) is to focus a 

point object to a point image.  All real sources are extended sources – 

that is, they have finite widths and heights.   

8.2.1. Magnification of the entrance aperture 

 The image of the entrance slit, ignoring aberrations and the diffrac-

tion limit, will not have the same dimensions as the entrance slit itself.  

Calling w and h the width and height of the entrance slit, and w' and h' 

the width and height of its image, the tangential and sagittal 

magnifications T and S are 

  T   
w

w
 = 





cos

cos

r

r 
,      S   

h

h
 =

r

r 
. (8-2) 
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 These relations, which indicate that the size of the image of the 

entrance slit will usually differ from that of the entrance slit itself, are 

derived below. 

 Figure 8-3 shows the plane of dispersion.  The grating center is at O; 

the x-axis is the grating normal and the y-axis is the line through the 

grating center perpendicular to the grooves at O.  Monochromatic light of 

wavelength leaves the entrance slit (of width w) located at the polar 

coordinates (r, ) from the grating center O and is diffracted along angle 

.  When seen from O, the entrance slit subtends an angle  = w/r in the  

 

 

Figure 8-3.  Geometry showing tangential magnification.  Monochromatic light from the 

entrance slit, of width w, is projected by the grating to form an image of width w'.  

dispersion (xy) plane.  Rays from one edge of the entrance slit have 

incidence angle , and are diffracted along ; rays from the other edge 

have incidence angle  + , and are diffracted along  – .*  The image 

(located a distance r' from O), therefore subtends an angle  when seen 

from O, has width w' = r'.  The ratio T = w'/ w is the tangential 

magnification. 

 We may apply the grating equation to the rays on either side of the 

entrance slit: 

  Gm= sin + sin, (8-3) 

  Gm= sin(+)+ sin(–). (8-4) 

                                                             
* In this section, both  and  are taken to be positive incremental angles, so by Eq. (2-

1), a positive change in  will lead to a negative change in . 
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Here G (= 1/d) is the groove frequency along the y-axis at O, and m is the 

diffraction order.  Expanding sin(+) in Eq. (8-4) in a Taylor series 

about  = 0, we obtain 

  sin(+) = sin + (cos) + ..., (8-5) 

where terms of order two or higher in  have been truncated.  Using Eq. 

(8-5) (and its analogue for sin(–)) in Eq. (8-4), and subtracting it 

from Eq. (8-3), we obtain 

  cos = cos , (8-6) 

and therefore 

  








cos

cos





, (8-7) 

from which the first of Eqs. (8-2) follows. 

 Figure 8-4 shows the same situation in the sagittal plane, which is 

perpendicular to the principal plane and contains the pole diffracted ray.  

The entrance slit is located below the principal plane; consequently, its 

image is above this plane.  A ray from the top of the center of the entrance 

slit is shown.  Since the grooves are parallel to the sagittal plane at O, the 

grating acts as a mirror in this plane, so the angles  and ' are equal in 

magnitude.   

 

 

Figure 8-4.  Geometry showing sagittal magnification.  Monochromatic light from the 

entrance slit, of height h, is projected by the grating to form an image of height h'. 
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Ignoring signs, the tangents of these angles are equal as well: 

  tan = tan'     
r

z

r

z




 , (8-8) 

where z and z' are the distances from the entrance and exit slit points to 

the principal plane.  A ray from an entrance slit point a distance |z + h| 

from this plane will image toward a point |z' + h'| from this plane, where 

h' now defines the height of the image.  As this ray is governed by 

reflection as well, 

  tan = tan'     
r

hz

r

hz







. (8-9) 

Simplifying this using Eq. (8-8) yields the latter of Eqs. (8-2). 

8.2.2. Effects of the entrance aperture dimensions 

 Consider a spectrometer with a point source located in the principal 

plane: the aberrated image of this point source has width w' (in the 

dispersion direction) and height h' (see Figure 8-5).  If the point source 

is located out of the principal plane, it will generally be distorted, tilted 

and enlarged: its dimensions are now W' and H'.  Because a point 

source is considered, these image dimensions are not due to any 

magnification effects of the system. 

 Now consider a rectangular entrance slit of width W0 (in the 

dispersion plane) and height H0.  If we ignore aberrations and line 

curvature (see Section 7.2) for the moment, we see that the image of the 

entrance slit is also a rectangle, whose width W0' and height H0' are 

magnified: 

  W0' = T W0,  H0' = S H0 (8-10) 

 (see Figure 8-6).   

 Combining these two cases provides the following illustration (Figure 

8-7).  From this figure, we can estimate the width W' and height H' of the 

image of the entrance slit, considering both magnification effects and 

aberrations, as follows: 

  W' = T W0 + W' = 0
cos

cos
W

r

r




+ W', (8-11a) 

  H' = S H0 + H' = 0H
r

r 
+ H'. (8-11b) 
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Eqs. (8-11) allow the imaging properties of a grating system with an 

entrance slit of finite area to be estimated quite well from the imaging 

properties of the system in which an infinitesimally small object point is 

considered.  In effect, rays need only be traced from one point in the en-

trance slit (which determines W' and H'), from which the image 

dimensions for an extended entrance slit can be calculated using Eqs. (8-

10).*   

8.2.3. Effects of the exit aperture dimensions 

 The linespread function for a spectral image, as defined above, 

depends on the width of the exit aperture as well as on the width of the 

diffracted image itself.  In determining the optimal width of the exit slit 

(or single detector element), a rule of thumb is that the width w" of the 

exit aperture should roughly match the width w' of the image of the 

entrance aperture, as explained below. 

 Typical linespread curves for the same diffracted image scanned by 

three different exit slit widths are shown in Figure 8-8.  For simplicity, we 

have assumed T = 1 for these examples.  The horizontal axis is position 

along the image plane, in the plane of dispersion.  This axis can also be 

thought of as a wavelength axis (that is, in spectral units); the two axes 

are related via the dispersion.  The vertical axis is relative light intensity 

(or throughput) at the image plane; its bottom and top represent no 

intensity and total intensity (or no rays entering the slit and all rays 

entering the slit), respectively.  Changing the horizontal coordinate 

represents scanning the monochromatic image by moving the exit slit 

across it, in the plane of dispersion.  This is approximately equivalent to 

changing the wavelength while keeping the exit slit fixed in space. 

 An exit slit that is narrower than the image (w" < w') will result in a 

linespread graph such as that seen in Figure 8-8(a).  In no position of the 

exit slit (or, for no diffracted wavelength) do all diffracted rays fall within 

the slit, as it is not wide enough; the relative intensity does not reach its 

maximum value of unity. In (b), the exit slit width matches the width of 

the image: w" = w'.  At exactly one point during the scan, all of the 

diffracted light is contained within the exit slit; this point is the peak (at a 

 

                                                             
* These equations fail to consider the effects of line curvature, so they must be regarded as 
approximate, though their accuracy should be acceptable for plane-symmetric grating 
systems (i.e., those whose entrance slit is centered in the dispersion plane) provided the 
entrance slit is not too tall (H0 << r). 
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Figure 8-5.  Point source imaging.   A point source is imaged by the system; the upper 

image is for a point source located at the center of the entrance slit (in the dispersion 

plane), and the lower image shows how this image is tilted and distorted (and generally gets 

larger) for a point source off the dispersion plane. 

 

Figure 8-6.  Entrance slit imaging (without aberrations).   Ignoring aberrations and line 

curvature, the image of a rectangular entrance slit is also a rectangle, one that has been 

magnified in both directions. 

 

Figure 8-7.  Entrance slit imaging (including aberrations).   Superimposing the point-

source images for the four corners of the entrance slit onto the (unaberrated) image of the 

entrance slit leads to the diagram above, showing that the rectangle in which the entire 

image lies has width W and height H. 
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relative intensity of unity) of the curve.  In (c) the exit slit is wider than 

the image (w" > w').  The exit slit contains the entire image for many 

positions of the exit slit. 

 

 

Figure 8-8.  Linespread curves for different exit slit widths.   The vertical axis is relative 

intensity at the exit aperture, and the horizontal axis is position along the image plane (in 

the plane of dispersion).  For a given curve, the dark horizontal line shows the FWHM (the 

width of that portion of the curve in which its amplitude exceeds its half maximum); the 

FWZH is the width of the entire curve. (a) w" < w'; (b) w" = w'; (c) w" > w'.  In (a) the peak 

is below unity.  In (a) and (b), the FWHM are approximately equal.  Severely aberrated 

images will yield linespread curves that differ from those above (in that they will be 

asymmetric), although their overall shape will be similar.  

 In these figures the quantities FWZH and FWHM are shown.  These 

are abbreviations for full width at zero height and full width at half 

maximum.  The FWZH is simply the total extent of the linespread 

function, usually expressed in spectral units.  The FWHM is the spectral 

extent between the two extreme points on the linespread graph that are at 
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half the maximum value.  The FWHM is often used as a quantitative 

measure of image quality in grating systems; it is often called the effective 

spectral bandwidth.  The FWZH is sometimes called the full spectral 

bandwidth.  It should be noted that the terminology is not universal 

among authors and sometimes quite confusing.  

 As the exit slit width w' is decreased, the effective bandwidth will 

generally decrease. If w' is roughly equal to the image width w, though, 

further reduction of the exit slit width will not reduce the bandwidth 

appreciably.  This can be seen in Figure 8-8, in which reducing w' from 

case (c) to case (b) results in a decrease in the FWHM, but further 

reduction of w' to case (a) does not reduce the FWHM. 

 The situation in w" < w' is undesirable in that diffracted energy is lost 

(the peak relative intensity is low) since the exit slit is too narrow to 

collect all the diffracted light at once.  The situation w" > w' is also 

undesirable, since the FWHM is excessively large (or, similarly, an 

excessively wide band of wavelengths is accepted by the wide slit).  The 

situation w" = w' seems optimal: when the exit slit width matches the 

width of the spectral image, the relative intensity is maximized while the 

FWHM is minimized.  An interesting curve is shown in Figure 8-9, in 

which the ratio FWHM/FWZH is shown vs. the ratio w"/w' for a typical 

grating system.  This ratio reaches its single minimum near w" = w'. 

 The height of the exit aperture has a more subtle effect on the 

imaging properties of the spectrometer, since by 'height' we mean extent 

in the direction perpendicular to the plane of dispersion.  If the exit slit 

height is less than the height (sagittal extent) of the image, some 

diffracted light will be lost, as it will not pass through the aperture.  Since 

diffracted images generally display curvature, truncating the sagittal 

extent of the image by choosing a short exit slit also reduces the width of 

the image (see Figure 8-10).  This latter effect is especially noticeable in 

Paschen-Runge mounts. 

 In this discussion we have ignored the diffraction effects of the 

grating aperture: the comments above consider only the effects of 

geometrical optics on instrumental imaging.  For cases in which the 

entrance and exit slits are equal in width, and this width is two or three 

times the diffraction limit, the linespread function is approximately 

Gaussian in shape rather than the triangle shown in Figure 8-8(b). 
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Figure 8-9.   FWHM/FWZH vs. w"/w' for a typical system. 

8.3. INSTRUMENTAL BANDPASS 

 The instrumental bandpass of an optical spectrometer depends on 

both the dimensions of the image of the entrance slit and the exit slit 

dimensions.  Ignoring the effects of the image height, the instrumental 

bandpass B is given by 

    B = P sup(w',w") (8-12) 

where P is the reciprocal linear dispersion (see Eq. (2-17)), w' is the image 

width, w" is the width of the exit slit, and sup(w',w") is the greater of its 

arguments (i.e., the two-argument version of Eq. (7-25)): 

  









otherwise

if
),sup(

w

www
ww . (8-13) 

As P is usually expressed in nm/mm, the widths w' and w" must be 

expressed in millimeters to obtain the bandpass B in nanometers. 

 In cases where the image of the entrance slit is wider than the exit slit 

(that is, w' > w"), the instrumental bandpass is said to be imaging 

limited, whereas in those cases where the exit slit is wider than the image 

of the entrance slit (w' < w"), the instrumental bandpass is said to be slit 

limited.  [When an imaging-limited optical system is imaging limited due 
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primarily to the grating, either because of the resolving power of the 

grating or due to its wavefront errors, the system is said to be grating 

limited.] 

 

 

Figure 8-10.  Effect of exit slit height on image width.  Both the width and the height of the 

image are reduced by the exit slit chosen.  Even if the width of the exit slit is greater than 

the width of the image, truncating the height of the image yields w'* < w'.  [Only the top 

half of each image is shown.]   

 In the design of optical spectrometers, the widths of the entrance and 

exit slits are chosen by balancing spectral resolution (which improves as 

the slits become narrower, to a limit) and optical throughput (which 

improves as the slits widen, up to a limit).  Ideally, the exit slit width is 

matched to the width of the image of the entrance slit (case (b) in Figure 

8-8: w' = w") – this optimizes both resolution and throughput.  This 

optimum may only be achievable for one wavelength, the resolution of 

the other wavelengths generally being either slit-limited or imaging-

limited (with suboptimal throughput likely as well). 
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9. EFFICIENCY CHARACTERISTICS OF 

DIFFRACTION GRATINGS    
9.0. INTRODUCTION 

 Efficiency and its variation with wavelength and spectral order are 

important characteristics of a diffraction grating.  For a reflection grating, 

efficiency is defined as the energy flow (power) of monochromatic light 

diffracted into the order being measured, relative either to the energy 

flow of the incident light (absolute efficiency) or to the energy flow of 

specular reflection from a polished mirror substrate coated with the same 

material (relative efficiency).  [Intensity may substitute for energy flow in 

these definitions.]  Efficiency is defined similarly for transmission 

gratings, except that an uncoated substrate is used in the measurement of 

relative efficiency. 

 High-efficiency gratings are desirable for several reasons.  A grating 

with high efficiency is more useful than one with lower efficiency in 

measuring weak transition lines in optical spectra.  A grating with high 

efficiency may allow the reflectivity and transmissivity specifications for 

the other components in the spectrometer to be relaxed.  Moreover, 

higher diffracted energy may imply lower instrumental stray light due to 

other diffracted orders, as the total energy flow for a given wavelength 

leaving the grating is conserved (being equal to the energy flow incident 

on it minus any scattering and absorption).   

 Control over the magnitude and variation of diffracted energy with 

wavelength is called blazing, and it involves the manipulation of the 

micro-geometry of the grating grooves.  As early as 1874, Lord Rayleigh 

recognized that the energy flow distribution (by wavelength) of a 

diffraction grating could be altered by modifying the shape of the grating 

grooves.84  It was not until four decades later that R.W. Wood showed 

this to be true when he ruled a grating on which he had controlled the 

groove shape, thereby producing the first deliberately blazed diffraction 

grating.85 

                                                             
84 J. W. Strutt, Lord Rayleigh, “On the manufacture and theory of diffraction gratings,” 
Philos. Mag. 47, 193-205 (1874). 

85 R. Wood, “The echellette grating for the infra-red,” Philos. Mag. 20 (series 6), 770-778 
(1910). 
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 The choice of an optimal efficiency curve for a grating depends on the 

specific application.   For some cases the desired instrumental response is 

linear with wavelength; that is, the ratio of intensity of light and the 

electronic signal into which it is transformed is to be nearly constant 

across the spectrum.  To approach this as closely as possible, the spectral 

emissivity of the light source and the spectral response of the detector 

should be considered, from which the desired grating efficiency curve can 

be derived.  Usually this requires peak grating efficiency in the region of 

the spectrum where the detectors are least sensitive; for example, a 

visible-light spectrometer using a silicon detector would be much less 

sensitive in the blue than in the red, suggesting that the grating itself be 

blazed to yield a peak efficiency in the blue. 

 A typical efficiency curve (a plot of absolute or relative diffracted 

efficiency vs. diffracted wavelength ) is shown in Figure 9-1.  Usually 

such a curve shows a single maximum, at the peak wavelength (or blaze 

wavelength) B.  This curve corresponds to a given diffraction order m; 

the peak of the curve decreases in magnitude and shifts toward shorter 

wavelengths as |m| increases.  The efficiency curve also depends on the 

angles of use (i.e., the angles of incidence and diffraction).  Moreover, the 

curve depends on the groove spacing d (more appropriately, on the di-

mensionless parameter /d) and the material with which the grating is 

coated (for reflection gratings) or made (for transmission gratings). 

 

 

Figure 9-1.  A typical (simplified) efficiency curve.  This curve shows the efficiency E of a 

grating in a given spectral order m, measured vs. the diffracted wavelength .  The peak 

efficiency EP occurs at the blaze wavelength B. 
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 In many instances the diffracted power depends on the polarization 

of the incident light.  P-plane or TE polarized light is polarized parallel to 

the grating grooves, while S-plane or TM polarized light is polarized 

perpendicular to the grating grooves (see Figure 9-2).  For completely 

unpolarized incident light, the efficiency curve will be exactly halfway 

between the P and S efficiency curves.  

 

 

Figure 9-2.  S and P polarizations.  The P polarization components of the incident and 

diffracted beams are polarized parallel to the grating grooves; the S components are 

polarized perpendicular to the P components.  Both the S and P components are perpen-

dicular to the propagation directions. 

 Usually light from a single spectral order m is used in a spectroscopic 

instrument, so a grating with ideal efficiency characteristics would 

diffract all the power incident on it into this order (for the wavelength 

range considered).  In practice, this is never true: the distribution of the 

power by the grating depends in a complicated way on the groove spacing 

and profile, the spectral order, the wavelength, and the grating material.  

 Anomalies are locations on an efficiency curve (efficiency plotted vs. 

wavelength) at which the efficiency changes abruptly.  First observed by 

R. W. Wood, these sharp peaks and troughs in an efficiency curve are 

sometimes referred to as Wood's anomalies.  Anomalies are rarely 

observed in P polarization efficiency curves, but they are often seen in S 

polarization curves (see Figure 9-3).  Anomalies are discussed in more 

detail in Section 9.13. 
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Figure 9-3.  Anomalies in the first order for a typical grating with triangular grooves.  

The P efficiency curve (solid line) is smooth, but anomalies are evident in the S curve 

(dashed line).  The passing-off locations are identified by their spectral order at the top of 

the figure. 

9.1. GRATING EFFICIENCY AND GROOVE SHAPE 

 The maximum efficiency of a grating is typically obtained with a 

simple smooth triangular groove profile, as shown in Figure 9-4, when 

the groove (or blaze) angle B is such that the specular reflection angle for 

the angle of incidence is equal (in magnitude and opposite in sign) to the 

angle of diffraction (see Section 2.8).  Ideally, the groove facet should be 

flat with smooth straight edges and be generally free from irregularities 

on a scale comparable to a small fraction (< 1/10) of the wavelength of 

light being diffracted. 

 Fraunhofer was well aware that the distribution of power among the 

various diffraction orders depended on the shape of the individual 

grating grooves.  Wood, many decades later, was the first to achieve a 

degree of control over the groove shape, thereby concentrating spectral 

energy into one angular region.  Wood's gratings were seen to light up, or 

blaze, when viewed at the correct angle. 
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Figure 9-4.  Triangular groove geometry.  The angles of incidence  and diffraction  are 

shown in relation to the facet angle .  GN is the grating normal and FN is the facet 

normal.  When the facet normal bisects the angle between the incident and diffracted rays, 

the grating is used in the blaze condition.  The blaze arrow (shown) points from GN to FN. 

9.2. EFFICIENCY CHARACTERISTICS FOR TRIANGULAR-

GROOVE GRATINGS 

 Gratings with triangular grooves can be generated by mechanical 

ruling, holographically using the Sheridon technique or by blazing the 

sinusoidal groove profile of a holographic grating by ion etching.  The 

efficiency behavior of gratings with triangular groove profiles may be 

divided into six families, depending on the blaze angle:86 

 

 family blaze angle 

 very low blaze angle B < 5°  

 low blaze angle 5°  B < 10°  

 medium blaze angle 10° < B < 18°  

 special low anomaly 18° < B < 22°  

 high blaze angle 22° < B < 38°  

 very high blaze angle B > 38°  
  

                                                             
86 E. G. Loewen, M. Nevière and D. Maystre, “Grating efficiency theory as it applies to 
blazed and holographic gratings,” Appl. Opt. 16, 2711-2721 (1977). 
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 Very low blaze angle gratings (B < 5°) exhibit efficiency behavior 

that is almost perfectly scalar; that is, polarization effects are virtually 

nonexistent.  In this region, a simple picture of blazing is applicable, in 

which each groove facet can be considered a simple flat mirror.  The 

diffracted efficiency is greatest for that wavelength that is diffracted by 

the grating in the same direction as it would be reflected by the facets.  

This efficiency peak occurs in the m = 1 order at /d = 2 sin (provided 

the angle between the incident and diffracted beams is not excessive).  At 

B/2, where B is the blaze wavelength, the diffracted efficiency will be 

virtually zero (Figure 9-5) since for this wavelength the second-order 

efficiency will be at its peak.  Fifty-percent absolute efficiency is obtained 

from roughly 0.7B to 1.8B. 

 

 

Figure 9-5.  First-order theoretical efficiency curve: 2° blaze angle and Littrow mounting 

(2K = 0).  Solid curve, S-plane; dashed curve, P-plane. 

 For low blaze angle gratings (5° < B < 10°), polarization effects will 

occur within their usable range (see Figure 9-6).  In particular, a strong 

anomaly is seen near /d = 2/3.  Also observed is the theoretical S-plane 

theoretical efficiency peak of 100% exactly at the nominal blaze, 

combined with a P-plane peak that is lower and at a shorter wavelength.  

It is characteristic of all P-plane curves to decrease monotonically from 

their peak toward zero as /d   2, beyond which diffraction is not 
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possible (see Eq. (2-1)).  Even though the wavelength band over which 

50% efficiency is attained in unpolarized light is from 0.67B to 1.8B, 

gratings of this type (with 1200 groove per millimeter, for example) are 

widely used, because they most effectively cover the wavelength range 

between 200 and 800 nm (in which most ultraviolet-visible (UV-Vis) 

spectrophotometers operate). 

 

 

Figure 9-6.  Same as Figure 9-5, except 9° blaze angle. 

 A typical efficiency curve for a medium blaze angle grating (10° < B 

< 18°) is shown in Figure 9-7.  As a reminder that for unpolarized light 

the efficiency is simply the arithmetic average of the S- and P-plane effi-

ciencies, such a curve is shown in this figure only, to keep the other 

presentations simple. 

 The low-anomaly blaze angle region (18° < B < 22°) is a special one.  

Due to the fact that the strong anomaly that corresponds to the –1 and +2 

orders passing off (/d = 2/3) occurs just where these gratings have their 

peak efficiency, this anomaly ends up being severely suppressed (Figure 

9-8).  This property is quite well maintained over a large range of angular 

deviations (the angle between the incident and diffracted beams), namely 

up to 2K = 25°, but it depends on the grooves having an apex angle near 

90°.  The relatively low P-plane efficiency of this family of blazed gratings 

holds the 50% efficiency band from 0.7B to 1.9B. 
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Figure 9-7.  Same as Figure 9-5, except 14° blaze angle.  The curve for unpolarized light 

(marked U) is also shown; it lies exactly halfway between the S and P curves. 

 

Figure 9-8.  Same as Figure 9-5, except 19° blaze angle. 

 High blaze angle gratings (22° < B < 38°) are widely used, despite 

the presence of a very strong anomaly in their efficiency curves (Figure 9-

9).  For unpolarized light, the effect of this anomaly is greatly attenuated 

by its coincidence with the P-plane peak.  Another method for reducing 
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anomalies for such gratings is to use them at angular deviations 2K above 

45°, although this involves some sacrifice in efficiency and wavelength 

range.  The 50% efficiency is theoretically attainable in the Littrow 

configuration from 0.6B to 2B, but in practice the long-wavelength end 

corresponds to such an extreme angle of diffraction that instrumental 

difficulties arise. 

 

 

Figure 9-9.  Same as Figure 9-5, except 26° 45' blaze angle. 

 Theoretically, all gratings have a second high-efficiency peak in the S-

plane at angles corresponding to the complement of the blaze angle (90°–

B); in practice, this peak is fully developed only on steeper groove-angle 

gratings, and then only when the steep face of the groove is not too badly 

deformed by the lateral plastic flow inherent in the diamond tool 

burnishing process.  The strong polarization observed at all high angles of 

diffraction limits the useable efficiency in unpolarized light, but it makes 

such gratings very useful for tuning lasers, especially molecular lasers.  

The groove spacing may be chosen so that the lasing band corresponds to 

either the first or second of the S-plane high-efficiency plateaus.  The 

latter will give at least twice the dispersion (in fact the maximum 

possible), as it is proportional to the tangent of the angle of diffraction 

under the Littrow conditions typical of laser tuning. 
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 Very-high blaze angle gratings (B > 38°) are rarely used in the first 

order; their efficiency curves are interesting only because of the high P-

plane values (Figure 9-10).  In high orders they are often used in tuning 

dye lasers, where high  

 

 

Figure 9-10.  Same as Figure 9-5, except 46° blaze angle and 8° and 45° between the 

incident and diffracted beams (shown as light and heavy lines, respectively). 

dispersion is important and where tuning through several orders can 

cover a wide spectral region with good efficiency.  Efficiency curves for 

this family of gratings are shown for two configurations.  With an angular 

deviation of 2K = 8°, the efficiency does not differ too much from Littrow; 

when 2K = 45°, the deep groove results in sharp reductions in efficiency.  

Some of the missing energy shows up in the zeroth order, but some of it 

can be absorbed by the grating. 

9.3. EFFICIENCY CHARACTERISTICS FOR SINUSOIDAL-

GROOVE GRATINGS 

 A sinusoidal-groove grating can be obtained by the interferometric 

(holographic) recording techniques described in Chapter 4.  Sinusoidal 

gratings have a somewhat different diffracted efficiency behavior than do 

triangular-groove gratings and are treated separately.   
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 It is convenient to consider five domains of sinusoidal-groove 

gratings, 87 with progressively increasing modulation , where 

   = 
d

h
 (9-1) 

h is the groove height and d is the groove spacing:  

 domain modulation 

 very low   < 0.05  

 low 0.05 <  < 0.15  

 medium 0.15 <  < 0.25  

 high 0.25 <  < 0.4  

 very high  > 0.4  
 

 Very low modulation gratings ( < 0.05) operate in the scalar 

domain,88 where the theoretical efficiency peak for sinusoidal grooves is 

only 34% (Figure 9-11).  This figure may be readily scaled, and 

specification is a simple matter as soon as it becomes clear that the peak 

wavelength always occurs at B = 3.4h = 3.4d.  A blazed grating with an 

equivalent peak wavelength will require a groove depth 1.7 times greater. 

 Low modulation gratings (0.05 <  < 0.15) are quite useful in that 

they have a low but rather flat efficiency over the range 0.35 < /d < 1.4 

(Figure 9-12).  This figure includes not only the infinite conductivity 

values shown on all previous ones but includes the effects of finite 

conductivity by adding the curves for an 1800 g/mm aluminum surface.  

The most significant effect is in the behavior of the anomaly, which is the 

typical result of the finite conductivity of real metals. 

 Figure 9-13 is a good example of a medium modulation grating (0.15 

<  < 0.25). It demonstrates an important aspect of such sinusoidal 

gratings, namely that reasonable efficiency requirements confine first-

order applications to values of /d > 0.45, which makes them generally 

unsuitable for systems covering wide spectral ranges 

 

                                                             
87 E. G. Loewen, M. Nevière and D. Maystre, "Grating efficiency theory as it applies to 
blazed and holographic gratings," Appl. Opt. 16, 2711-2721 (1977). 

88 E. G. Loewen, M. Nevière and D. Maystre, "On an asymptotic theory of diffraction 
gratings used in the scalar domain," J. Opt. Soc. Am. 68, 496-502 (1978). 
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Figure 9-11.  First-order theoretical efficiency curve: sinusoidal grating, µ = 0.05 and 

Littrow mounting (2K = 0).  Solid curve, S-plane; dashed curve, P-plane. 

 

Figure 9-12.  First-order theoretical efficiency curve: sinusoidal grating, aluminum 

coating, 1800 grooves per millimeter, µ = 0.14 and Littrow mounting.  Solid curve, S-

plane; dashed curve, P-plane.  [For reference, the curves for a perfectly conducting surface 

are shown as well (light curves).] 
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Figure 9-13.  Same as Figure 9-12, except µ = 0.22 and 8° between incident and diffracted 

beams (2K = 8°). 

Over this restricted region, however, efficiencies are comparable to those 

of triangular-groove gratings, including the high degree of polarization.  

This figure also demonstrates how a departure from Littrow to an angular 

deviation of 2K = 8° splits the anomaly into two branches, corresponding 

to the new locations of the –1 and +2 order passing-off conditions. 

 High modulation gratings (0.25 <  < 0.40), such as shown in Figure 

9-14, have the maximum useful first-order efficiencies of sinusoidal-

groove gratings.  Provided they are restricted to the domain in which 

higher orders diffract (i.e., /d > 0.65), their efficiencies are very similar 

to those of triangular-groove gratings having similar groove depths (i.e., 

26° < B< 35°). 

 Very-high modulation gratings ( > 0.40), in common with 

equivalent triangular-groove gratings, have little application in the first 

order due to their relatively low efficiencies except perhaps over narrow 

wavelengths ranges and for grazing incidence applications. 
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Figure 9-14.  Same as Figure 9-12, except µ = 0.36. 

 Very-high modulation gratings ( > 0.40), in common with 

equivalent triangular-groove gratings, have little application in the first 

order due to their relatively low efficiencies except perhaps over narrow 

wavelengths ranges and for grazing incidence applications. 

9.4. THE EFFECTS OF FINITE CONDUCTIVITY 

 For metal-coated reflection gratings, the finite conductivity of the 

metal is of little importance for wavelengths of diffraction above 4 µm, 

but the complex nature of the dielectric constant and the index of 

refraction begin to effect efficiency behavior noticeably for wavelengths 

below 1 µm, and progressively more so as the wavelength decreases.  In 

the P-plane, the effect is a simple reduction in efficiency, in direct propor-

tion to the reflectance.  In the S-plane, the effect is more complicated, 

especially for deeper grooves and shorter wavelengths. 

 Figure 9-15 shows the first-order efficiency curve for a widely-used 

grating: 1200 g/mm, triangular grooves, medium blaze angle (B = 10°), 

coated with aluminum and used with an angular deviation of 8°.  The 

finite conductivity of the metal causes a reduction in efficiency; also, 

severe modification of the anomaly is apparent.  It is typical that the 

anomaly is broadened and shifted toward a longer wavelength compared 

with the infinite conductivity curve.  Even for an angular deviation as 
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small as 8°, the single anomaly in the figure is separated into a double 

anomaly. 

 

 

Figure 9-15.  First-order theoretical efficiency curve: triangular-groove grating, 

aluminum coating, 1200 grooves per millimeter, 10° blaze angle and 2K = 8°.  Solid 

curves, S-plane; dashed curves, P-plane.  For reference, the curves for a perfectly 

conducting surface are shown as well (light curves). 

 For sinusoidal gratings, the situation is shown in Figures 9-12 and 9-

14.  Figure 9-13 is interesting in that it clearly shows a series of new 

anomalies that are traceable to the role of aluminum. 

 With scalar domain gratings (either B < 5° or  < 0.10), the role of 

finite conductivity is generally (but not always) to reduce the efficiency by 

the ratio of surface reflectance.89 

9.5. DISTRIBUTION OF ENERGY BY DIFFRACTION          

ORDER 

 Gratings are most often used in higher diffraction orders to extend 

the spectral range of a single grating to shorter wavelengths than can be 

                                                             
89 E. G. Loewen, M. Nevière and D. Maystre, "On an asymptotic theory of diffraction 
gratings used in the scalar domain," J. Opt. Soc. Am. 68, 496-502 (1978). 
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covered in lower orders.  For blazed gratings, the second-order peak will 

be at one-half the wavelength of the nominal first-order peak, the third-

order peak at one-third, etc.  Since the ratio /d will be progressively 

smaller as |m| increases, polarization effects will become less significant; 

anomalies are usually negligible in diffraction orders for which |m| > 2.  

Figures 9-16 and 9-17 show the second- and third-order theoretical 

Littrow efficiencies, respectively, for a blazed grating with B = 26°45'; 

they are plotted as a function of m/d in order to demonstrate the proper 

angular ranges of use.  These curves should be compared with Figure 9-9 

for corresponding first-order behavior. 

 

 

Figure 9-16.  Second-order theoretical efficiency curve: 26° 45' blaze angle and Littrow 

mounting.  Solid curve, S-plane; dashed curve, P-plane. 

 For gratings with sinusoidally shaped grooves, higher orders can also 

be used, but if efficiency is important, the choice is likely to be a finer 

pitch first-order grating instead.  When groove modulations are very low 

(so that the grating is used in the scalar domain), the second-order 

efficiency curve looks similar to Figure 9-18, except that the theoretical 

peak value is about 23% (instead of 34%) and occurs at a wavelength 0.6 

times that of the first-order peak, which corresponds to 2.05h (instead of 

3.41h), where h is the groove depth.  Successive higher-order curves for 

gratings with sinusoidal grooves are not only closer together but drop off  
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more sharply with order than for gratings with triangular grooves.  For 

sufficiently deeply modulated sinusoidal grooves, the second order can 

often be used effectively, though (as Figure 9-18 shows) polarization 

effects are relatively strong.  The corresponding third-order theoretical 

curve is shown in Figure 9-19. 

 

 

Figure 9-17.  Same as Figure 9-16, except third order. 

 

Figure 9-18.  Second-order theoretical efficiency curve: sinusoidal grating, µ = 0.36 and 

Littrow mounting.  Solid curve, S-plane; dashed curve, P-plane. 
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Figure 9-19.  Same as Figure 9-18, except third order. 

9.6. USEFUL WAVELENGTH RANGE 

 The laws governing diffracted efficiency are quite complicated, but a 

very rough rule of thumb can be used to estimate the useful range of 

wavelengths available on either side of the blaze (peak) wavelength B for 

triangular-groove gratings.   

 For coarse gratings (for which d ≥ 2), the efficiency in the first 

diffraction order is roughly half its maximum (which is at B) at 2B/3 

and 3B/2.  Curves of similar shape are obtained in the second and third 

orders, but the efficiencies are typically 20% less everywhere, as 

compared with the first order. 

 Grating of fine pitch (d ≈ ) have a somewhat lower peak efficiency 

than do coarse gratings, though the useful wavelength range is greater. 

9.7. BLAZING OF RULED TRANSMISSION GRATINGS 

 Because they have no metallic overcoating, triangular-groove 

transmission gratings display far simpler efficiency characteristics than 

do their ruled counterparts.  In particular, transmission gratings have 

efficiency curves almost completely free of polarization effects. 

 The peak wavelength generally occurs when the direction of 

refraction of the incident beam through a groove (thought of as a small 
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prism) equals the direction dictated by the grating equation.  [This is in 

direct analogy with the model of reflection grating blazing in that the 

grooves are thought of as tiny mirrors; see Section 2.8.]  Due to the index 

of refraction of the grating, though, the groove angle exceeds the blaze 

angle for a transmission grating. 

 See Section 12.2 for more information on transmission gratings. 

9.8. BLAZING OF HOLOGRAPHIC REFLECTION 

GRATINGS 

 Although sinusoidal holographic gratings do not have the triangular 

groove profile found in ruled gratings, holographic gratings may still 

exhibit blazing characteristics (see, for example, Figure 9-18).    For this 

reason, it is not correct to say that all blazed gratings have triangular 

profiles, or that all blazed gratings are ruled gratings – blazing refers to 

high diffraction efficiency, regardless of the profile of the grooves or the 

method used to generate them. 

 There are some case in which it would be preferable for a holographic 

grating to have a triangular groove profile rather than a sinusoidal 

profile.  The method of using standing waves to record the grooves (see 

Section 4.2.1) was developed by Sheridon90 and improved by Hutley.91  

 Another useful technique for rendering sinusoidal groove profiles 

more nearly triangular is ion etching.  By bombarding a surface with 

energetic ions, the material can be removed (etched) by an amount per 

unit time dependent on the angle between the beam and the local surface 

normal.  The etching of a sinusoidal profile by an ion beam provides a 

continuously varying angle between the ion beam and the surface normal, 

which preferentially removes material at some parts of the profile while 

leaving other parts hardly etched.  The surface evolves toward a 

triangular groove profile as the ions bombard it.92 

                                                             
90 N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316-318 (1968). 

91 M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 
1-13 (1975);  M. C. Hutley and W. R. Hunter, “Variation of blaze of concave diffraction 
gratings,” Appl. Opt. 20, 245-250 (1981). 

92 Y. Aoyagi and S. Namba, Japan. J. Appl. Phys. 15, 721 (1976);  L. F. Johnson, “Evolution 
of grating profiles under ion-beam erosion,” Appl. Opt. 18, 2559-2574 (1979);  C. Palmer, J. 
Olson and M. M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal 
photoresist gratings,” Proc. SPIE 2622, 112-121 (1995). 
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 Other method for generating blazed groove profiles have been 

developed,93 but the Sheridon method and the method of ion etching are 

those most commonly used for commercially-available gratings. 

9.9. OVERCOATING OF REFLECTION GRATINGS 

 The metallic coating on a reflection grating is evaporated onto the 

substrate.  This produces a surface whose reflectivity is higher than that 

of the same metal electroplated onto the grating surface.  The thickness of 

the metallic layer is chosen to enhance the diffraction efficiency 

throughout the spectral region of interest. 

 Most standard reflection gratings are furnished with an aluminum 

(Al) reflecting surface.  While no other metal has more general 

application, there are several special situations where alternative surfaces 

or coatings are recommended.  Gratings coated with gold (Au) and silver 

(Ag) have been used for some time for higher reflectivity in certain 

spectral regions, as have more exotic materials such as iridium (Ir), 

osmium (Os) and platinum (Pt).94 

 The reflectivity of aluminum drops rather sharply for wavelengths 

below 170 nm.  While freshly deposited, fast-fired pure aluminum in high 

vacuum maintains its reflectivity to wavelengths shorter than 100 nm, the 

thin layer of oxide that grows on the aluminum (upon introduction of the 

coating to atmosphere) will cause a reduction in efficiency below about 

250 nm.95  Fortunately, a method borrowed from mirror technology 

makes it possible to preserve the reflectivity of aluminum to shorter 

wavelengths.96  The process involves overcoating the grating with a thin 

layer of fast-fired aluminum, which is followed immediately by a coating 

of magnesium fluoride (MgF2) approximately 25 nm thick.  The main 

                                                             
93 M. B. Fleming and M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36, 4635-4643 
(1997). 

94 E.g., J. M. Bennett and E. J. Ashley, “Infrared reflectance and emittance of silver and 
gold evaporated in ultrahigh vacuum,” Appl. Opt. 4, 221-224 (1965);  R. F. Malina and W. 
Cash, “Extreme ultraviolet reflection efficiencies of diamond-turned aluminum, polished 
nickel, and evaporated gold surfaces,” Appl. Opt. 17, 3309-3313 (1978);   M. R. Torr, 
“Osmium coated diffraction grating in the Space Shuttle environment: performance,” Appl. 
Opt. 24, 2959-2961 (1985). 

95 R. P. Madden, L. R. Canfield and G. Hass, “On the vacuum-ultraviolet reflectance of 
evaporated aluminum before and during oxidation,” J. Opt. Soc. Am. 53, 620-625 (1963). 

96 G. Hass and R. Tousey, “Reflecting coatings for the extreme ultraviolet,” J. Opt. Soc. Am. 
49, 593-602 (1959). 
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purpose of the MgF2 coating is to protect the aluminum from oxidation.  

The advantage of this coating is especially marked in the region between 

120 and 200 nm.  While reflectivity drops off sharply below this region, it 

remains higher than that of gold and comparable to that of platinum, the 

most commonly used alternative materials, down to 70 nm. 

 Overcoating gratings so that their surfaces are coated with two layers 

of different metals sometimes leads to a change in diffraction efficiency 

over time.  Hunter et al.97 have found the cause of this change to be 

intermetallic diffusion.  For example, they measured a drastic decrease 

(over time) in efficiency at 122 nm for gratings coated in Au and then 

overcoated in Al + MgF2; this decrease was attributed to the formation of 

intermetallic compounds, primarily AuAl2 and Au2Al.  Placing a suitable 

dielectric layer such as SiO between the two metallic layers prevents this 

diffusion. 

 As mentioned elsewhere, fingerprints are a danger to aluminized 

optics.  It is possible to overcoat such optics, both gratings and mirrors, 

with dielectrics like MgF2, to prevent finger acids from attacking the alu-

minum.  These MgF2 coatings cannot be baked, as is customary for glass 

optics, and therefore must not be cleaned with water.  Spectrographic-

grade organic solvents are the only recommended cleaning agents, and 

they should be used sparingly and with care. 

 Single-layer and multilayer dielectric coatings, which are so useful in 

enhancing plane mirror surfaces, are less generally applicable to diffrac-

tion gratings, since in certain circumstances these coatings lead to 

complex guided wave effects.98  For wavelengths below 30 nm, in which 

grazing angles of incidence and diffraction are common, multilayer 

coatings can enhance efficiency considerably.99 

                                                             
97 W. R. Hunter, T. L. Mikes and G. Hass, "Deterioration of Reflecting Coatings by 
Intermetallic Diffusion," Appl. Opt. 11, 1594-1597 (1972). 

98 M. C. Hutley, J. F. Verrill and R. C. McPhedran, “The effect of a dielectric layer on the 
diffraction anomalies of an optical grating,” Opt. Commun 11, 207-209 (1974). 

99 J. C. Rife, W. R. Hunter, T. W. Barbee, Jr., and R. G. Cruddace, "Multilayer-coated 
blazed grating performance in the soft x-ray region," Appl. Opt. 28, 1984 (1989). 
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9.10. THE RECIPROCITY THEOREM   

 A useful property of grating efficiency is that embodied in the 

reciprocity theorem,100 which states that (under certain conditions) 

reversing the direction of the beam diffracted by a grating will leave its 

diffraction efficiency unchanged.  Stated another way, the reciprocity 

theorem says that the grating efficiency for wavelength  in order m is 

unchanged under the transformation   .  This equivalence follows 

from the periodic nature of the grating and is strictly true for perfectly-

conducting gratings and lossless dielectric gratings illuminated by an 

incident plane wave.101    

 Three consequences of the reciprocity theorem should be noted:102 

• The zeroth-order efficiency E(,0) is a symmetric function (of 

angle ) about  = 0. 

• Rotation of the grating groove profile through 180° (while 

keeping  constant) does not affect E(,0); moreover, if only two 

diffraction orders are propagating (say, m = 0 and m = 1), the 

efficiency E(,1) will be unchanged as well. 

• The efficiency E(,m) for a given diffraction order m is a 

symmetric function of vs. sin about the Littrow condition ( = 

).103 

9.11. CONSERVATION OF ENERGY 

 The principle of conservation of energy requires that all the energy 

incident on a diffraction grating be accounted for; this can be represented 

mathematically (in terms of intensities), considering a single wavelength 

, as 

  Iin = Iout = 
m

Idiff(m) + Iabsorbed + Iscattered ,         (for a single ) (9-2) 

                                                             
100 R. Petit, “A tutorial introduction," in Electromagnetic Theory of Gratings, R. Petit, ed. 
(Springer-Verlag, New York, 1980), p. 12. 

101 E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 
New York, 1997), p. 38. 

102 R. C. McPhedran and M. D. Waterworth, “A theoretical demonstration of properties of 
grating anomalies (S-polarization),” Opt. Acta 19, 877-892 (1972). 

103 E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 
New York, 1997), p. 38. 
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where the summation is over all diffraction orders m that propagate (i.e., 

for a reflection grating, all orders for which the diffraction angle (m) 

satisfies the inequalities –90º  (m)  +90º).   Here the terms Iabsorbed and 

Iscattered are the “losses” due to absorption of energy by the grating and by 

scattering, respectively. 

 It is important to recognize that Eq. (9-2) holds only for the case in 

which the grating and the incident beam are fixed in space, and each 

diffraction order is diffracted through a unique diffraction angle given by 

Eq. (2-4) with constant .   Eq. (9-2) does not hold true when the 

intensity of each diffraction order m is measured in the Littrow 

configuration, since in this case the incidence angle  is changed for each 

order such that  = m.  Care must be taken when adding intensities (or 

efficiencies) in several orders for a single wavelength: the sum of these 

intensities is not conserved according to Eq. (9-2) unless the grating and 

incident beam remain fixed while a detector is moved (in angle) from one 

order to the next to take the intensity measurements.   

 Eq. (9-2) can be used to advantage by designing an optical system for 

which only two diffraction orders propagate: order m = 1 (or m = –1) and 

order m = 0 (which always exists:  < 90º implies (0) < 90º, since 

(0) = –).  This case requires a small groove spacing d and an incidence 

angle  such that the diffraction angle for m = 2 and for the other first 

order pass beyond 90º: from Eq. (2-1) this requires 

  sin = 


sin
d

m
 (9-3) 

for m = 2, m = –2 and m = –1 (assuming that m = 1 is the order chosen to 

propagate).   For such a system, Eq. (9-2) simplifies to become 

  Iin = Iout = Idiff(0) + Idiff(1)  + Iabsorbed + Iscattered ,    (for a single ) (9-4) 

where the term Idiff(0) corresponds to the reflected intensity and Idiff(1) 

corresponds to the intensity diffracted into the m = 1 order.   Choosing a 

groove profile that reduces the reflected intensity Idiff(0) will thereby 

increase the diffracted intensity Idiff(1). 

 Eq. (9-2) is generally useful in measuring grating efficiency, but in 

the presence of anomalies (see below) they can lead to considerable 

inaccuracies. 
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9.12. GRATING ANOMALIES   

 In 1902. R. W. Wood observed that the intensity of light diffracted by 

a grating generally changed slowly as the wavelength was varied, but 

occasionally a sharp change in intensity was observed at certain 

wavelengths.104   Called anomalies, these abrupt changes in the grating 

efficiency curve were later categorized into two groups: Rayleigh 

anomalies and resonance anomalies. 105    

9.12.1. Rayleigh anomalies  

 Lord Rayleigh predicted the spectral locations where a certain set of 

anomalies would be found: he suggested that these anomalies occur when 

light of a given wavelength ' and spectral order m' is diffracted at || = 

90° from the grating normal (i.e., it becomes an evanescent wave, passing 

over the grating horizon).  For wavelengths  < ', || < 90°, so 

propagation is possible in order m' (and all lower orders), but for  > ' 

no propagation is possible in order m' (but it is still possible in lower 

orders).  Thus, there is a discontinuity in the diffracted power vs. wave-

length in order m' at wavelength , and the power that would diffract into 

this order for  > ' is redistributed among the other propagating orders.  

This causes abrupt changes in the power diffracted into these other 

orders.   

 These Rayleigh anomalies, which arise from the abrupt redistribution 

of energy when a diffracted order changes from propagating (|| < 90°) 

to evanescent (|| > 90°), or vice versa, are also called threshold 

anomalies.106   

9.12.2. Resonance anomalies  

 The second class of anomalies, which are usually much more 

noticeable than Rayleigh anomalies, are caused by resonance 

                                                             
104 R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction 
grating spectrum,” Philos. Mag. 4, 396-402 (1902);  R.W. Wood, “LI. An experimental 
study of grating errors and ‘ghosts’”, The London, Edinburgh, and Dublin Philosophical 
Magazine and Journal of Science, 48:285, 497-508 (1924); R. W. Wood, “Anomalous 
diffraction gratings,” Phys. Rev. 48, 928-936 (1935);  J. E. Stewart and W. S. Gallaway, 
“Diffraction anomalies in grating spectrophotometers,” Appl. Opt. 1, 421-430 (1962). 

105 A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” 
Appl. Opt. 4, 1275-1297 (1965). 
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phenomena,107 the most well-known of which are surface excitation 

effects.108  At the interface between a dielectric and a metal, there are 

specific conditions under which a charge density oscillation (called a 

surface plasma wave) can be supported, which carries light intensity 

away from the incident beam and therefore decreases the diffraction 

efficiency of the grating.   The efficiency curve would show a sharp drop 

in intensity at the corresponding conditions (see Figure 9-20). 

 

  

 

Figure 9-20.  A typical (simplified) efficiency curve showing a sharp drop where the 

conditions are met for surface plasmon resonance.  The curve over this narrow spectral 

region would appear to increase monotonically if the resonance condition were not met. 

 For a resonance anomaly to exist, a resonance condition must be met 

– this places restrictions on the wavelengths (and incidence angles) that 

will exhibit resonance effects for a given groove profile and refractive 

indices.  This results from the fact that in this phenomenon – the surface 

plasmon resonance (SPR) effect109 – the electromagnetic field that 

propagates along the metal-dielectric interface extends into each 

medium, so the characteristics of this propagating wave depend on the 

                                                                                                                                        
106 E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 
New York, 1997), ch. 8. 

107 U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves 
on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213-222 (1941). 

108 R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon 
resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530-1533 (1968). 

109 R. H. Ritchie, E. T. Arakawa, J. J. Cowan and R. N. Hamm, “Surface-plasmon 
resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530-1533 (1968). 
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material conditions near the interface.  This useful feature of SPR has led 

to its use in several sensing applications,110 such as biosensing111 and gas 

sensing.112  SPR can also be used to characterize the surface profile of the 

grating itself, especially by probing the diffraction effects due to higher 

harmonics in the periodic structure on the grating surface.113 

 While diffraction gratings generally do not convert incident P-

polarized light to S-polarized light (or vice versa) upon diffraction, it has 

been observed that such polarization conversion can occur if the grating 

is not illuminated in the principal plane (i.e.,   0 in Eq. (2-3)).114  In this 

case, called conical diffraction (see Section 2.1), resonance effects can 

lead to a strong polarization conversion peak (e.g., a sharp trough in the 

S-polarized efficiency curve coincident with a sharp peak in the P-

polarized efficiency curve). 

9.13. GRATING EFFICIENCY CALCULATIONS   

 Several techniques have been developed to calculate grating 

efficiencies, most of which have two characteristics in common: they 

employ Maxwell’s equations whose boundary conditions are applied at 

the corrugated grating surface, and their difficulty in implementation 

varies in rough proportion to their accuracy.  In this section only a brief 

                                                             
110 J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” 
Sensors and Actuators B 54, 3-15 (1999);  

111 F. Caruso, M. J. Jory, G. W. Bradberry, J. R. Sambles and D. N. Furlong, “Acousto-optic 
surface-plasmon-resonance measurements of thin films on gold,” J. Appl. Phys. 83, 5 
(1983);  D. C. Cullen, R. G. W. Brown and R. C. Lowe, “Detection of immunocomplex 
formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 
3, 211 (1987);  J. M. Brockman and S. M. Fernández, “Grating-coupled surface plasmon 
resonance for rapid, label-free, array-based sensing,” American Laboratory, 37-40 (June 
2001). 

112 M. J. Jory, P. S. Cann and J. R. Sambles, “Surface-plasmon-polariton studies of 18-
crown-6 metal-free phthalocyanide,” J. Phys. D: Appl. Phys. 27, 169-174 (1994) 

113 E. L. Wood, J. R. Sambles, N. P. Cotter and S. C. Kitson, “Diffraction grating 
characterization using multiple-wavelength excitation of surface plasmon polaritons,” J. 
Mod. Opt. 42, 1343-1349 (1995). 

114 G. P. Bryan-Brown, J. R. Sambles and M. C. Hutley, “Polarisation conversion through 
the excitation of surface plasmons on a metallic grating”, J. Mod. Opt. 37, 1227-1232 
(1990);  S. J. Elston, G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion from 
diffraction gratings,” Phys. Rev. B 44, 6393-6400 (1991). 
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mention of these techniques is provided – more details may be found in 

Petit115, Maystre116, and Loewen and Popov117. 

 Grating efficiency calculations start with a description of the physical 

situation: an electromagnetic wave is incident upon a corrugated surface, 

the periodicity of which allows for a multiplicity of diffracted waves (each 

in a different direction, corresponding to a unique diffraction order as 

described in Chapter 2).  Efficiency calculations seek to determine the 

distribution of the incident energy into each of the diffraction orders. 

 Scalar theories of grating efficiency lead to accurate results in certain 

cases, such as when the wavelength is much smaller than the groove 

spacing (d << ); the vectorial nature of optical radiation (manifest in the 

property of polarization) is not taken into account in this formalism. 

 Vector or electromagnetic theories can be grouped into two 

categories.  Differential methods start from the differential form of 

Maxwell’s equations for TE (P) and TM (S) polarization states, whereas 

integral methods start from the integral form of these equations.  Each of 

these categories contains a number of methods, none of which is claimed 

to cover all circumstances. 

 Both differential and integral methods have been developed and 

studied extensively, and both have been implemented numerically and 

thoroughly tested against a wide variety of experimental data.  Some of 

these numerical implementations are commercially available. 

                                                             
115 Petit, R., ed., Electromagnetic Theory of Gratings, vol. 22 in “Topics in Current 
Physics” series (Springer-Verlag, 1980). 

116 D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, vol. 
XXI, E. Wolf, ed. (Elsevier, 1984), pp. 2-67. 

117 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. 
(New York, 1987), ch. 10. 
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1100..  STRAY LIGHT CHARACTERISTICS OF 

GRATINGS AND GRATING SYSTEMS     
10.0. INTRODUCTION 

 An annoying characteristic of all optical surfaces is their ability to 

scatter light.   This undesirable light is often referred to as stray radiant 

energy (SRE).  When this light reaches the detector of an instrument 

designed to measure an optical signal, the SRE contributes to the noise of 

the system and thereby reduces the signal-to-noise ratio (SNR). 

 The terminology of SRE in grating systems is not standard, so for 

clarity we refer to unwanted light arising from imperfections in the 

grating itself as scattered light or grating scatter, and unwanted light 

reaching the detector of a grating-based instrument as instrumental 

stray light or simply stray light.  [We choose this definition of scattered 

light so that it will vanish for a perfect grating; we will see below that this 

does not generally cause the instrumental stray light to vanish as well.]  

With these definitions, some scattered light will also be stray light (if it 

reaches the detector); moreover, some stray light will not be scattered 

light (since it will not have arisen from imperfections in the grating).118 

10.1. GRATING SCATTER 

 Of the radiation incident on the surface of a reflection grating, some 

will be diffracted according to Eq. (2-1) and some will be absorbed by the 

grating itself.  The remainder is scattered light, which may arise from 

several factors, including imperfections in the shape and spacing of the 

grooves and roughness on the surface of the grating.  An excellent 

                                                             
118 This definition of stray light is not universal; while it is in agreement with K. D. Mielenz, 
V. R. Weidner and R. W. Burke, “Heterochromic stray light in UV absorption spectrometry: 
a new test method,” Appl. Opt. 21, 3354-3356 (1982), it is not in agreement with the ASTM, 
which defines the quantity stray radiant power as being composed of wavelengths outside 
the spectral bandwidth of the monochromator (ASTM standard E387, “Standard Test 
Method for Estimating Stray Radiant Power Ratio of Dispersive Spectrophotometers by the 
Opaque Filter Method,” 2004).  [See also W. Kaye, “Stray light ratio measurements,” Anal. 
Chem. 53, 2201-2206 (1981).]  The ASTM definition does not account for light of the 
correct wavelength that reaches the detector, but which does not follow the desired optical 
path. 
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analysis of grating scatter can be found in Sharpe & Irish,119 and 

measured grating scatter was compared to predictions of Beckmann’s 

scalar theory and Rayleigh’s vector theory by Marx et al.120 

 Two types of scattered light are often distinguished.  Diffuse 

scattered light is scattered into the hemisphere in front of the grating 

surface.  It is due mainly to grating surface microroughness.  It is the 

primary cause of scattered light in holographic gratings.  For 

monochromatic light of wavelength incident on a grating, the intensity 

of diffuse scattered light is higher near the diffraction orders of  than 

between these orders.*  In-plane scatter is unwanted energy in the 

dispersion plane.  Due primarily to random variations in groove spacing 

or groove depth, its intensity is generally higher than the background 

diffuse scattered light. 

 Consider a diffraction grating consisting of a pattern of grooves 

whose nominal spacing is d.  We have defined scattered light as all light 

leaving the grating due to its imperfections; this is equivalent to the 

operational definition that scattered light is all light energy leaving the 

surface of a diffraction grating that does not follow the grating equation 

for the nominal groove spacing d, 

    sinsin  dm . (2-1) 

This is analogous to the concept of scattered light for a mirror, which may 

be defined the light leaving its surface that does not follow the law of 

reflection for the nominal mirror surface. 

 This definition of grating scatter – as being caused by imperfections 

in the grating – does not consider light diffracted into different orders 

{m} as scattered light.  That is, diffraction into multiple orders is not an 

artifact of grating imperfections, but a direct consequence of the 

phenomenon of constructive interference on which the grating operates 

(see Section 2.1).  However, light diffracted into other orders can 

contribute to instrumental stray light (see Section 10.2 below). 

                                                             
119 M. R. Sharpe and D. Irish, “Stray light in diffraction grating monochromators,” Opt. 
Acta 25, 861-893 (1978). 

120 E. Marx, T. A. Germer, T. V. Vorburger and B. C. Park, “Angular distribution of light 
scattered from a sinusoidal grating,” Appl. Opt. 39, 4473-4485 (2000). 

* This observation has led some to observe that grating scatter is “blazed”. 
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10.1.1. Surface irregularities in the grating coating 

 A grating surface that is rough on the scale of the incident wavelength 

(or somewhat smaller) will cause a small portion of the incident light to 

be scattered diffusely (i.e., into all directions) with intensity that varies 

approximately with the inverse fourth power of the wavelength.121  

Surface roughness is due in part to the surface quality of the master 

grating, either ruled or holographic, since the metal coating of a ruled 

master, and the photoresist coating of a holographic master, are not 

perfectly smooth.  Moreover, the addition of a reflective coating may 

contribute to the surface roughness due to the coating’s granular 

structure. 

10.1.2. Dust, scratches & pinholes on the surface of the grating   

 Each speck of dust, tiny scratch, and pinhole void in the surface of 

a reflection grating will serve as a “scatter center” and cause diffuse 

scatter.  This is evident upon inspecting a grating under a bright light: 

dust, scratches, pinholes etc. are easily visible and bright when looked at 

from many different angles (hence the diffuse nature of their scattered 

light). 

10.1.3. Irregularities in the position of the grooves 

 The presence of spatial frequencies in the groove pattern other than 

that of the groove spacing d will give rise to constructive interference of 

the diffracted light at angles that do not follow the grating equation for 

the nominal groove spacing d, but for different groove spacings d’  d. 

 Until the recent advent of interferometric control of ruling engines, 

mechanically ruled gratings exhibited secondary spectra, called ghosts, 

due to slight deviations in the placement of its grooves compared with 

their ideal locations.  Ghosts that are close to and symmetric about the 

parent diffracted line are called Rowland ghosts, and are due to longer-

term periodicities (on the order of millimeters), whereas Lyman ghosts 

are farther from the parent line and are caused by short-term 

periodicities (on the order of the groove spacing).  Both Rowland and 

Lyman ghosts appear at angular positions given by the grating equation, 

but for spatial frequencies other than 1/d (see Section 11.1). 

                                                             
121 M. R. Sharpe and D. Irish, "Stray light in diffraction grating monochromators," Opt. 
Acta 25, 861-893 (1978). 
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 The presence of random (rather than periodic) irregularities in 

groove placement leads to a faint background between orders, rather 

than sharp ghosts, whose intensity varies roughly with the inverse square 

of the wavelength.122   This background is called grass because it 

resembles blades of grass when observed using green Hg light. 

 Ghosts and grass are in-plane effects (that is, they are seen in and 

near the dispersion plane) and lead to interorder scatter.  Holographic 

gratings, whose grooves are formed simultaneously, do not exhibit 

measurable groove placement irregularities if made properly and 

therefore generally exhibit lower levels of interorder scatter.   With the 

use of sophisticated interferometric control systems on modern ruling 

engines, though, this advantage has been reduced when holographic 

gratings are compared with recently-ruled gratings. 

10.1.4. Irregularities in the depth of the grooves 

 A distribution of groove depths about the nominal groove depth is a 

natural consequence of the burnishing process and the elasticity of metal 

coatings (in the case of ruled master gratings) or to local variations in 

exposure intensities and developing conditions (in the case of 

holographic master gratings).  These variations have been shown to 

generate a continuous distribution of scattered light that varies with the 

inverse cube of the wavelength.123 

10.1.5. Spurious fringe patterns due to the recording system 

 For holographic gratings, care must be taken to suppress all 

unwanted reflections and scattered light when producing the master 

grating.  Light from optical mounts, for example, may reach the master 

grating substrate during exposure and leave a weak fringe pattern that 

causes scattered light when the grating is coated with a metal and 

illuminated.124  A scratch on a lens in a recording beam can create a 

“bulls-eye” pattern on the master grating that serves as a scatter center 

for every replica made from that master.  Recording the holographic 

                                                             
122 Ibid. 

123 Ibid. 

124 M. C. Hutley, Diffraction Gratings, Academic Press (New York, 1970), p. 107. 
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master in incoherent light can reduce the stray light attributable to 

recording artifacts.125 

10.1.6. The perfect grating 

 From the perspective of scattered light, a perfect grating would have 

a pattern of perfectly placed grooves (no variation in spacing from any 

groove to the next, and no additional pattern to the grooves leading to 

spacings d’  d), each of the proper depth (no variation), and the surface 

irregularities on the grooves would be so much smaller than the 

wavelength of incident light that these irregularities would have no effect 

on the diffracted light.  Moreover, this perfect grating would have no 

scratches, digs, blemishes or other visible surface features, and (if 

holographic) would contain no holographic artifacts of the recording 

optical system.  In this ideal case, we might be forgiven in thinking that 

all light incident on the grating would leave according to the grating 

equation (2-1) for the nominal groove spacing d.   

 A general expression for the light intensity from a perfect grating is 

given by Sharpe and Irish126 as 
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 (10-1) 

where  is the illumination wavelength,   is the monochromator setting 

(which determines the orientation of the grating: it is not a wavelength), 

B is the blaze wavelength, B is the spectral bandpass of the instrument, 

and N is the number of grooves under illumination.  We see that this 

equation is generally non-zero, so even a perfect grating cannot be 

expected to diffract no light anywhere except in its diffraction orders as 

given by Eq. (2-1). 

                                                             
125 M. C. Hutley, “Improvements in or relating to the formation of photographic records,” 
UK Patent no. 1384281 (1975);  E. Sokolova, B. Kruizinga and I. Golubenko, “Recording of 
concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. 
Eng. 43, 2613-2622 (2004). 

126 M. R. Sharpe and D. Irish, "Stray light in diffraction grating monochromators," Opt. 
Acta 25, 861-893 (1978). 
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10.2. INSTRUMENTAL STRAY LIGHT 

 Consider a spectrometer aligned so that the detector records the 

analytical wavelength  in spectral order m.  Our definition of 

instrumental stray light leads to its operational definition as light of 

either the wrong wavelength    or the wrong spectral order m  m 

that reaches the detector; this is generally a problem because most 

detectors are not wavelength-selective and cannot distinguish between 

light of wavelength  and light of wavelength   .   Also included in our 

definition of stray light is any light that reaches the detector that does not 

follow the optical path for which the system was designed, even if this 

light is of wavelength  and diffraction order m. 

 Instrumental stray light can be attributed to several factors, which 

are described below. 

10.2.1. Grating scatter 

 Light scattered by the grating, as discussed in Section 10.1 above, 

may reach the detector and contribute to instrumental stray light.  This 

type of stray light is absent for a “perfect” grating. 

10.2.2. Other diffraction orders from the grating 

 Light of the analytical wavelength  is not only diffracted into order 

m, but into any other orders that propagate.  The zero order, which 

always propagates but is almost always of no value in the instrument, is 

particularly troublesome.  The other diffracted beams are not oriented 

toward the detector by the grating, but if these beams are reflected by a 

wall, a mount or another optical component, or if these beams scatter off 

any interior surfaces in the instrument, some fraction of their intensity 

may reach the detector and contribute to instrumental stray light.  This 

type of stray light is not absent even for a perfect grating, and requires 

proper instrumental design (e.g., baffles, light traps, order-sorting filters 

etc.) to reduce. 

10.2.3. Overfilling optical surfaces 

 Fraunhofer diffraction from the illuminated edges of optical surfaces 

can be a significant cause of instrumental stray light.  All optics in the 

path should be underfilled (that is, the illuminated area on the surface of 

each optic should fall within the edges of the optic), with masks or other 

apertures if necessary.  Verrill has suggested that the intensity in the 
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incident beam fall off (from the center) according to a Gaussian function, 

to avoid an abrupt cut-off of intensity at the edge of the beam.127 

 Another important contributor to the instrumental stray light in 

some optical systems is the illumination of optical components 

downstream from the grating by light of wavelengths in the same 

diffraction order near the analytical wavelength  (i.e., the wavelength for 

which the monochromator is tuned).  For example, in a Czerny-Turner 

monochromator (see Figure 6-1), the instrument may be designed so that 

light of wavelength  underfills the concave mirror after the grating, but 

light of wavelengths  will diffract at slightly different angles and may 

impinge upon the edges of the mirror.  These rays will scatter from the 

edges of the mirror and may reach the detector.128   

10.2.4. Direct reflections from other surfaces  

 A diffraction grating causes all wavelengths incident on it to diffract 

in different directions according to the grating equation, which in turn 

will illuminate the interior of the optical system.129  Light in another 

order m  m or at another wavelength    for which m  m will not 

be diffracted toward the exit slit, but as in Section 10.2.2, this light may 

be reflected or scattered by other optical components, mounts or interior 

walls and directed toward the exit slit.   

 For certain wavelengths, light may reflect from another surface 

toward the grating and be rediffracted to the detector (called multiply 

diffracted light).130   For example, in a Czerny-Turner monochromator 

(see Section 6.2.1), light can be diffracted by the grating back toward the 

first concave mirror and reflected toward the grating; this light will be 

diffracted again, and may reach the second mirror and then the exit slit.  

[Of course, the analogous situation may arise involving the second mirror 

                                                             
127 J. F. Verrill, “The specification and measurement of scattered light from diffraction 
gratings,” Opt. Acta 25, 531-547 (1978). 

128 S. Brown and A. W. S. Tarrant, “Scattered light in monochromators,” Opt. Acta 25, 
1175-1186 (1978). 

129 ASTM standard E387, “Standard Test Method for Estimating Stray Radiant Power 
Ratio of Dispersive Spectrophotometers by the Opaque Filter Method” (2004). 

130 J. J. Mitteldorf and D. O. Landon, “Multiply diffracted light in the Czerny-Turner 
spectrometer,” Appl. Opt. 7, 1431-1435 (1968);  R. C. Hawes, ”Multiply diffracted light in 
the Czerny-Turner spectrometer,” Appl. Opt. 8, 1063 (1969);  A. B. Shafer and D. O. 
Landon, “Comments on Multiple Diffracted Light in a Czerny-Turner Spectrometer,” Appl. 
Opt. 8, 1063-1064 (1969).  
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instead of the first.]  These possibilities can be eliminated by proper 

system design,131 filtering,132 or the use of masks.133 

 Proper instrument design and the use of baffles and light traps can 

reduce the effects of these unwanted reflections on instrumental stray 

light.  Care in the analysis of the causes of stray light is especially 

important for monochromators, since all wavelengths in all diffraction 

orders (including the zero order) move as the analytical wavelength is 

scanned, so a wall or mount that does not cause stray light when the 

grating is in one orientation may be a major cause of stray light when the 

grating is rotated to another orientation. 

 Reflection (and diffuse scatter) from interior instrument walls can be 

reduced by using highly-absorbing paint or coatings on these surfaces 

and moving these surfaces as far from the optical train as possible (for 

this reason, it is generally more difficult to reduce stray light in smaller 

instruments).  

 Light can also scatter (or be reflected) by the exit slit.134 

 Tilting the detector element or array slightly, so that any reflections 

from its surface propagate out of the dispersion plane, can reduce the 

effects of this cause of stray light.  

10.2.5. Optical effects due to the sample or sample cell  

 In analytical instruments, care must be taken to choose sample cells 

that are properly designed (given the characteristics of the optical path) 

and made of materials that do not fluoresce; otherwise the cell will be a 

source of stray light.  Moreover, some samples will themselves fluoresce.   

10.2.6. Thermal emission  

 For work in the far infrared, the blackbody radiation of all 

components in the instrument (as well as the instrument walls) will 

generate a background in the same spectral range as that of the analytical 

                                                             
131 J. F. Verrill, “The specification and measurement of scattered light from diffraction 
gratings,” Opt. Acta 25, 531-547 (1978). 

132 A. Watanabe and G. C. Tabisz, “Multiply diffracted light in Ebert Monochromators,” 
Appl. Opt. 6, 1132-1134 (1967). 

133 C. M. Penchina, “Reduction of stray light in in-plane grating spectrometers,” Appl. Opt. 
6 1029-1031 (1967). 

134 Ibid. 
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wavelength (e.g., at room temperature (293 K = 20 °C = 68 °F), objects 

radiate with a spectrum that peaks around = 10 m).135 

 It is clear that a spectrometer containing a perfect grating (one that 

exhibits no detectable scattered light) will still have nonzero instrumental 

stray light.  The often-made statement “the grating is the greatest cause of 

stray light in the system” may sometimes be true, but even a perfect 

grating must obey the grating equation. 

10.3. ANALYSIS OF OPTICAL RAY PATHS IN A GRATING-

BASED INSTRUMENT 

 Although a thorough raytrace analysis of an optical system is 

generally required to model the effects of scattered light, we may 

approach the case of a simple grating-based instrument conceptually.  We 

consider the case in which the grating is illuminated with monochromatic 

light; the more general case in which many wavelengths are present can 

be considered by extension. 

 A simple case is shown in Figure 10-1.  Light of wavelength  enters 

the instrument through the entrance slit and diverges toward the grating, 

which diffracts the incident light into a number of orders {m} given by 

the grating equation (for all orders m for which  given by Eq. (2-1) is 

real).  One of these orders (say m = 1) is the analytical order, that which is 

designed to pass through the exit slit.  All other propagating orders, 

including the ever-present m = 0 order, are diffracted away from the exit 

slit and generally strike an interior wall of the instrument, which absorbs 

some of the energy, reflects some, and scatters some.   

 Some of the light reaching the interior walls may reflect or scatter 

directly toward the exit slit, but most of it does not; that which is reflected 

or scattered in any other direction will eventually reach another interior 

wall or it will return to the grating (and thereby be diffracted again). 

 This simple illustration allows us to draw a number of conclusions 

regarding the relative intensities of the various rays reaching the exit slit.  

We call E(,m) the diffraction efficiency of the grating (in this use 

geometry) at wavelength  in order m; therefore, we choose a grating for 

which E(,1) is maximal in this use geometry (which will minimize the  

efficiencies of the other propagating orders: E(,0), E(,1), etc.; see 

                                                             
135 J. E. Stewart, “The effect of extraneous radiation on photometric accuracy of infrared 
spectrophotometers,” Appl. Opt. 2, 1141-1146 (1963). 
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Section 9.12).  We further call  the fraction of light incident on an 

interior wall that is reflected and  the fraction that is scattered in any 

given direction, and stipulate that both  and  are much less of unity 

(i.e., we have chosen the interior walls to be highly absorbing).  

[Generally,  and  depend on wavelength and incidence angle, and  on 

the direction of scatter as well, but for this analysis we ignore these 

dependencies.] 

 

 

 

Figure 10-1.  A simple grating system.  Monochromatic light enters the system through the 

entrance slit ES and is diffracted by grating G into several orders by the grating; one of 

these orders (the analytical order) passes through the exit slit XS.  Also shown are various 

rays other than that of the analytical order that may reflect or scatter off interior walls or 

other optics and reach the exit slit.  [For simplicity, focusing elements are not shown.]   

 With these definitions, we can approximate total intensity I(,1) of 

the light incident on the grating that reaches the exit slit when the system 

is tuned to transmits wavelength  in order m = 1 as 

 I(,1) =  I0() E(,1)  
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where I0() is the intensity incident on the grating and )3(O represents 

terms of order three or higher in  and .   

 The first term in Eq. (10-2) is the intensity in the analytical 

wavelength and diffraction order; in an ideal situation, this would be the 

only light passing through the exit slit, so we may call this quantity the 

“desired signal”.  Subtracting this quantity from both sides of Eq. (10-2), 

dividing by it and collecting terms yields the fractional stray light S(,1): 

 S(,1)  = 
   

   1,

1,)1,(

0

0





EI

EII 
 

   =   )3(22 O   
1

)1,(

),(

m
m

E

mE




. (10-3) 

The first term in Eq. (10-3) is the sum, over all other propagating orders, 

of the fraction of light in those diffracted orders that is reflected by an 

interior wall to the exit slit, divided by the desired signal; each element in 

this sum is generally zero unless that order strikes the wall at the correct 

angle.  The second term is the sum, over all other orders, of the fraction of 

light in those orders that is scattered directly into the exit slit; the 

elements in this sum are generally nonzero, again divided by the desired 

signal.  Both of these sums are linear in  or  (both << 1) and in E(,m1) 

(each of which is considerably smaller than E(,1) since we have chosen 

the grating to be blazed in the analytical order).  The third through fifth 

sums represent light that is reflected off two walls into the exit slit, or 

scattered off two walls into the exit slit, or reflected off one wall and 

scattered off another wall to reach the exit slit – in all three cases, the 

terms are quadratic in either  or  and can therefore be neglected (under 

our assumptions).  

 If we generalize this analysis for a broad-spectrum source, so that 

wavelengths other than  are diffracted by the grating, then we obtain 

  S(,1) =   )3(22 O    
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Note that, in each term, the integral over wavelength is inside the sum, 

since the upper limit of integration is limited by the grating equation (2-1) 

for each diffraction order m.  Of course, the integration limits may be 



 

152 

 

further restricted if the detector employed is insensitive in certain parts 

of the spectrum. 

10.4. DESIGN CONSIDERATIONS FOR REDUCING STRAY 

LIGHT 

 From Section 10.3, we can identify some suggestions for designing 

a grating-based system for which instrumental stray light is reduced.  We 

consider a grating used in first order (m = 1). 

 First, start with a grating as close to the definition of “perfect” in 

Section 10.1.6 as possible (easier said than done), and blaze it so that the 

first order efficiency E(,m=1) is as high as possible and the efficiencies in 

the other orders, E(,m1), are as low as possible.  Provided other design 

considerations (e.g., dispersion) are met, it may be advantageous to 

choose a groove spacing d such that only the first and zero orders 

propagate; by the analysis in Section 10.3, this will reduce each sum in 

Eq. (10-2) and Eq. (10-4) to one element each (for m = 0). 

 Use an entrance slit that is as small as possible, and an exit slit that is 

as narrow as possible (without being narrower than the image of the 

entrance slit) and as short as possible (without reducing the signal to an 

unacceptably low level).   

 Underfill the grating and all other optical components, preferably by 

using a beam with a Gaussian intensity distribution.  This will ensure that 

essentially all the light incident on the grating will be diffracted according 

to the grating equation (2-1). 

 Next, design the system to contain as few optical components 

between the entrance slit and the exit slit (or detector element(s)), for two 

reasons: each optic is a source of scatter, and each optic will pass less 

than 100% of the light incident on it – both effects will reduce the signal-

to-noise (SNR) ratio.  Specify optical components with very smooth 

surfaces (a specification which is more important when a short 

wavelength is used, since scatter generally varies inversely with 

wavelength to some power greater than unity136). 

 Design the optical system so that the resolution is slit-limited, rather 

than imaging-limited (see Section 8.3); this will reduce the spectral 

bandwidth passing through the exit slit (whose width, multiplied by the 

                                                             
136 Stover, J. C., Optical Scattering: Measurement and Analysis (McGraw-Hill, New York: 
1990). 
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reciprocal linear dispersion, will equal the entire spectral range passing 

through the slit; otherwise, the imaging imperfections will allow some 

neighboring wavelengths outside this range to pass through as well). 

 The choice of mounting (see chapters 6 and 7) can also affect 

instrumental stray light.  For example, a Czerny-Turner monochromator 

(with two concave mirrors; see Section 6.2.1) will generally have lower 

stray light than a comparable Littrow monochromator (with a single 

concave mirror; see Section 6.2.4) since the former will allow the 

entrance and exit slits to be located father apart.137  

 Make the distances between the surfaces as large as possible to take 

advantage of the inverse square law that governs intensity per unit area 

as light propagates; an underused idea is to design the optical system in 

three dimension rather than in a plane – this reduces the volume taken 

by the optical system and also removes some optics from the dispersion 

plane (which will reduce stray light due to reflections and multiply 

diffracted light).   

 Use order-sorting filters where necessary (or, for echelle systems, 

cross-dispersers138).  Also, the use of high-pass or low-pass filters to 

eliminate wavelengths emitted by the source but outside the wavelength 

range of the instrument, and to which the detector is sensitive, will help 

reduce stray light by preventing the detector from seeing these 

wavelengths. 

 It may be advantageous to make the interior walls not only highly 

absorbing but reflecting rather than scattering (i.e., use a glossy black 

paint rather than a flat black paint).  The rationale for this 

counterintuitive suggestion is that if all unwanted light cannot be 

absorbed, it is better to control the direction of the remainder by 

reflection rather than to allow it to scatter diffusely; controlled reflections 

from highly-absorbing surfaces (with only a few percent of the light 

reflected at each surface) will quickly extinguish the unwanted light 

without adding to diffuse scatter.  Of course, care must be taken during 

design to ensure that there are no direct paths (for one or two reflections) 

directly to the exit slit; baffles can be helpful when such direct paths are 

not otherwise avoidable. 

                                                             
137 J. F. Verrill, “The specification and measurement of scattered light from diffraction 
gratings,” Opt. Acta 25, 531-547 (1978). 

138 R. W. Wood, J. Opt. Soc. Am. 37, 733 (1947); G. R. Harrison, “The production of 
diffraction gratings: II. The design of echelle gratings and spectrographs,” J. Opt. Soc. Am. 
39, 522-528 (1949). 
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 Avoid grazing reflections from interior walls, since at grazing angle 

even materials that absorb at near-normal incidence are generally highly 

reflecting. 

 Ensure that the system between the entrance slit and the detector is 

completely light-tight, meaning that room light cannot reach the detector, 

and that only light passing through the entrance slit can reach the exit 

slit. 

 Finally, hide all mounting brackets, screws, motors, etc. – anything 

that might scatter or reflect light.  Any edges (including the slits) should 

be painted with a highly absorbing material; this includes the edges of 

baffles. 

 While it is always best to reduce instrumental stray light as much as 

possible, a lock-in detection scheme can be employed to significantly 

reduce the effects of instrumental stray light.  The technique involves 

chopping (alternately blocking and unblocking) the principal diffraction 

order and using phase-sensitive detection to retrieve the desired signal.139 

 A useful technique at the breadboard stage (or, if necessary, the 

product stage) is to operate the instrument in a dark room, replace the 

exit slit or detector with the eye or a camera, and look back into the 

instrument (taking adequate precautions if intense light is used).  What 

other than the last optical component can be seen?  Are there any obvious 

sources of scatter, or obvious undesirable reflections?  What changes as 

the wavelength is scanned?  Before the availability of commercial stray 

light analysis software, this technique was often used to determine what 

surfaces needed to be moved, or painted black, or hidden from “the view 

of the exit slit” by baffles and apertures; even today, optical systems 

designed with such software should be checked in this manner. 

  

 

                                                             
139 H. Field, “UV-VIS-IR spectral responsivity measurement system for solar cells,” 
National Renewable Energy Laboratory pub. CP-520-25654 (November 1998). 
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11. TESTING AND CHARACTERIZING 

DIFFRACTION GRATINGS  
11.1. THE MEASUREMENT OF SPECTRAL DEFECTS140 

 It is fundamental to the nature of diffraction gratings that errors are 

relatively easy to measure, although not all attributes are equally 

detectable or sometimes even definable. 

 For example, a grating with low background (in the form of scatter or 

satellites) can be simply tested for Rowland ghosts on an optical bench.  

With a mercury lamp or a laser source, and a scanning slit connected to a 

detector and recorder, a ghost having intensity 0.002% of the intensity of 

the main line can be easily observed.  The periodic error in the groove 

spacing giving rise to such a ghost may be less than one nanometer. 

 Grating ghosts are measured at MKS by making the grating part of 

a scanning spectrometer and illuminating it with monochromatic light, 

such as that from a mercury isotope lamp (isotope 198 or 202) or a he-

lium-neon laser.  On scanning both sides of the parent line, using a chart 

recorder and calibrated attenuators, it is easy to identify all ghost lines 

and to measure their intensities relative to the parent line.   

 The importance of ghosts in grating applications varies considerably.  

In most spectrophotometers, and in work with low-intensity sources, 

ghosts play a negligible role.  In Raman spectroscopy, however, even the 

weakest ghost may appear to be a Raman line, especially when 

investigating solid samples, and hence these ghosts must be suppressed 

to truly negligible values. 

 Ghosts are usually classified as Rowland ghosts, Lyman ghosts and 

satellites.   

11.1.1. Rowland ghosts   

 Rowland ghosts are spurious lines seen in some grating spectra that 

result from large-scale (millimeter) periodic errors in the spacing of the 

grooves (see Figure 11-1).  These lines are usually located symmetrically 

with respect to each strong spectral line at a (spectral) distance from it 

                                                             
140 For additional reading, see E. G. Loewen and E. Popov, Diffraction Gratings and 
Applications, Marcel Dekker, Inc. (1997), pp. 402-413. 
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that depends on the period of the error, and with an intensity that de-

pends on the amplitude of this error. 

 

 

Figure 11-1.  ‘Ghost’ trace showing Rowland ghosts caused by the periodic error of 2.54 

mm in the lead screw of the MIT ‘B’ engine.  MR215 is an echelle grating, with 52.67 g/mm, 

in this case tested in the 54th order. 

 If the curve of groove spacing error vs. position is not simply 

sinusoidal, there will be several ghosts on each side of the parent line 

representing the various orders from each of the harmonics of the error 

curve.  On engines with mechanical drives, Rowland ghosts are associated 

primarily with errors in the lead or pitch of the precision screw, or with 

the bearings of the ruling engine.  As a consequence, their location 

depends upon the number of grooves ruled for each complete turn of the 

screw.  For example, if the ruling engine has a pitch of 2 mm, and a ruling 

is made at 1200 grooves/mm, 2400 grooves will be ruled per turn of the 

screw, and the ghosts in the first order can be expected to lie at  = ± 

/2400 from the parent line , with additional ghosts located at integral 

multiples of .  In gratings ruled on engines with interferometric 

feedback correction mechanisms, Rowland ghosts are usually much less 
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intense, but they can arise from the mechanisms used in the correction 

system if care is not taken to prevent their occurrence. 

 If the character of the periodic errors in a ruling engine were simply 

harmonic, which is rarely true in practice, the ratio of the diffracted 

intensities of the first order Rowland ghost (IRG(m=1)) to that of the parent 

line (IPL) is 
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where A is the peak simple harmonic error amplitude,  is the angle of 

incidence, and  is the diffracted wavelength.   

 The second-order Rowland ghost IRG(m=2) will be much less intense 

(note the exponent): 
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Higher-order Rowland ghosts would be virtually invisible.  The ghost 

intensity is independent of the diffraction order m of the parent line, and 

of the groove spacing d.  In the Littrow configuration, Eq. (11-1) becomes 
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an expression derived in 1893 by Rowland. 

 These simple mathematical formulas do not always apply in practice 

when describing higher-order ghost intensities, since the harmonic 

content of actual error curves gives rise to complex amplitudes that must 

be added vectorially and then squared to obtain intensity functions.  

Fortunately, the result of this complication is that ghost intensities are 

generally smaller than those predicted from the peak error amplitude. 

 The order of magnitude of the fundamental harmonic error 

amplitude can be derived from Eq. (11-1) or Eq. (11-3).  For example, a 

1200 g/mm grating used in the m = 1 order in Littrow will show a 0.14% 

first-order ghost intensity, compared with the parent line, for a fun-

damental harmonic error amplitude of A = 10 nm.  For some 

applications, this ghost intensity is unacceptably high, which illustrates 

the importance of minimizing periodic errors of ruling.  For Raman grat-

ings and echelles, the amplitude A of the periodic error must not exceed 
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one nanometer; the fact that this has been accomplished is a remarkable 

achievement. 

11.1.2. Lyman ghosts  

 Ghost lines observed at large spectral distances from their parent 

lines are called Lyman ghosts.  They result from compounded periodic 

errors in the spacing of the grating grooves; the period of Lyman ghosts is 

on the order of a few times the groove spacing.   

 Lyman ghosts can be said to be in fractional-order positions (see 

Figure 11-2).  Thus, if every other groove is misplaced so that the period 

contains just two grooves, ghosts are seen in the half-order positions.  

The number of grooves per period determines the fractional-order 

position of Lyman ghosts.   

 

 

Figure 11-2.  ‘Ghost’ trace showing Lyman ghosts, the small spikes between orders 2 and 3, 

which can be associated with fractional order positions, e.g., an error every five grooves 

corresponds to a fraction order of 1/5.   
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 Usually it is possible to find the origin of the error in the ruling 

engine once its periodicity is determined.  It is important that Lyman 

ghosts be kept to a minimum, because they are not nearly as easy to 

identify as Rowland ghosts. 

11.1.3. Satellites 

 Satellites are false spectral lines usually occurring very close to the 

parent line.  Individual gratings vary greatly in the number and intensity 

of satellites which they produce.  In a poor grating, they give rise to much 

scattered light, referred to as grass (so called since this low intensity scat-

tered light appears like a strip of lawn when viewed with green mercury 

light).  In contrast to Rowland ghosts, which usually arise from errors 

extending over large areas of the grating, each satellite usually originates 

from a small number of randomly misplaced grooves in a localized part of 

the grating. With laser illumination, a relative background intensity of 

10–7 is easily observable with the eye.  

11.2. THE MEASUREMENT OF GRATING EFFICIENCY141 

 Grating efficiency measurements are generally performed with a 

double monochromator system.  The first monochromator supplies 

monochromatic light derived from a tungsten lamp, mercury arc, or 

deuterium lamp, depending on the spectral region involved.  The grating 

being tested serves as the dispersing element in the second monochro-

mator.  In the normal mode of operation, the output is compared with 

that from a high-grade mirror coated with the same material as the 

grating.  The efficiency of the grating relative to that of the mirror is 

reported (relative efficiency), although absolute efficiency values can also 

be obtained (either by direct measurement or through knowledge of the 

variation of mirror reflectance with wavelength).  For plane reflection 

gratings, the wavelength region covered is usually 190 nm to 2.2 µm; 

gratings blazed farther into the infrared are often measured in higher 

orders.  Concave reflection gratings focus as well as disperse the light, so 

the entrance and exit slits of the second monochromator are placed at the 

positions for which the grating was designed (that is, concave grating 

                                                             
141 For additional reading, see E. G. Loewen and E. Popov, Diffraction Gratings and 
Applications, Marcel Dekker, Inc. (1997), pp. 413-423, and also D. J. Michels, T. L. Mikes 
and W. R. Hunter, ”Optical grating evaluator: a device for detailed measurement of 
diffraction grating efficiencies in the vacuum ultraviolet,“ Appl. Opt. 13, 1223-1229 (1974). 
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efficiencies are measured in the geometry in which the gratings are to be 

used).  Transmission gratings are tested on the same equipment, with 

values given as the ratio of diffracted intensity to the intensity falling 

directly on the detector from the light source (i.e., absolute efficiency). 

 Curves of efficiency vs. wavelength for plane gratings are made 

routinely on all new master gratings produced by MKS, both plane and 

concave, with light polarized in the S and P planes to assess the presence 

and amplitudes (if any) of anomalies.  Such curves are available on the 

Richardson Gratings website, http://www.gratinglab.com/ (for an 

example, see Figure 11-3).   

  

 

Figure 11-3.  Example of an efficiency curve.   This efficiency curve is specific to the 

particular grating under test, as well as the conditions of illumination (the incidence and 

diffraction angles). 



 

161 

 

11.3. THE MEASUREMENT OF DIFFRACTED WAVEFRONT 

QUALITY 

11.3.1. The Foucault knife-edge test 

 One of the most critical tests an optical system can undergo is the 

Foucault knife-edge test.  This test not only reveals a great deal about 

wavefront deficiencies but also locates specific areas (or zones) on the 

optical component where they originate.  The test is suited equally well to 

plane and concave gratings (for the former, the use of very high-grade 

collimating optics is required).  The sharper (i.e., more abrupt) its knife-

edge cut-off, the more likely that a grating will yield high resolution.   

 The sensitivity of the test depends on the radius of the concave 

grating (or the focal length of the collimating system), and may exceed 

that of interferometric testing, although the latter is more quantitative. 

 The Foucault test is a sensitive and powerful tool, but experience is 

required to interpret each effect that it makes evident.  All MKS plane 

gratings, large plane replicas and large-radius concave gratings are 

checked by this method (see Figure 11-4). 

11.3.2. Direct wavefront testing 

 Any departure from perfect flatness of the surface of a plane grating, 

or from a perfect sphere of the surface of a concave grating, as well as 

variations in the groove spacing, depth or parallelism, will result in a 

diffracted wavefront that is less than perfect.  In order to maintain 

resolution, this departure from perfection is generally held to /4 or less, 

where is the wavelength of the light used in the test.  To obtain an 

understanding of the magnitudes involved, it is necessary to consider the 

angle at which the grating is used.  For simplicity, consider this to be the 

blaze angle, under Littrow conditions.  Any surface figure error of height 

h will cause a wavefront deformation of 2h cos, which decreases with 

increasing ||.  On the other hand, a groove position error p introduces 

a wavefront error of 2p sin, which explains why ruling parameters are 

more critical for gratings used in high-angle configurations. 

 A plane grating may produce a slightly cylindrical wavefront if the 

groove spacing changes linearly, or if the surface figure is similarly 

deformed.  In this special case, resolution is maintained, but focal 

distance will vary with wavelength. 
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Figure 11-4.  A grating under test on the MKS 5-meter test bench.   Light from a mercury 

source (not shown, about 5 meters to the right) is collimated by the lens (shown) which 

illuminates the grating (shown on a rotation stage); the same lens refocuses the diffracted 

light to a plane very near the light source, where the diffracted wavefront can be inspected. 

 A plane grating may produce a slightly cylindrical wavefront if the 

groove spacing changes linearly, or if the surface figure is similarly 

deformed.  In this special case, resolution is maintained, but focal 

distance will vary with wavelength. 

 Wavefront testing can be done conveniently by mounting a grating at 

its autocollimating angle (Littrow) in a Twyman-Green interferometer or 

a phase measuring interferometer (PMI; see Figure 11-5).  MKS 

interferometers have apertures up to 150 mm (6 inches).   With coherent 

laser light sources, however, it is possible to make the same 

measurements with a much simpler Fizeau interferometer, equipped with 

computer fringe analysis. 

 It should be noted that testing the reflected wavefront – that is, 

illuminating the grating in zero order – is generally inadequate since this 

arrangement will examine the flatness of the grating surface but tells 

nothing about the uniformity of the groove pattern. 
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 Periodic errors give rise to zig-zag fringe displacements.  A sudden 

change in groove position gives rise to a step in the fringe pattern; in the 

spectrum, this is likely to appear as a satellite.  Curved fringes due to 

progressive ruling error can be distinguished from figure problems by 

observing fringes obtained in zero, first and higher orders.  Fanning error 

(non-parallel grooves) will cause spreading fringes.  Figure 11-6 shows a 

typical interferogram, for an echelle grating measured in Littrow in the 

diffraction order of use (m = 33). 

 

 

Figure 11-5.  A plane grating under test on a phase measuring interferometer.   The 

grating is tested in the Littrow configuration so that the flatness of the diffracted wavefront 

is evaluated. 

 Experience has shown that the sensitivity of standard interferograms 

for grating deficiencies equals or exceeds that of other plane grating 

testing methods only for gratings used at high angles.  This is why the 

interferometric test is especially appropriate for the testing of echelles 

and other gratings used in high diffraction orders. 
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Figure 11-6.  Example of an interferogram and histogram generated by a Phase 

Measuring Interferometer (PMI).   In this example, a grating is illuminated in a circular 

region 50 mm in diameter, and its diffracted wavefront at  = 632.8 nm in the m = 33 order 

is recorded.   

11.4. THE MEASUREMENT OF RESOLVING POWER142 

 Resolving power (defined in Section 2.4) is a crucial characteristic of 

diffraction gratings since it is a measure of the fundamental property for 

which gratings are used: it quantifies the ability of the grating (when used 

in an optical system) to separate two nearby wavelengths.  Often 

resolving power is specified to be great enough that the resolution of the 

optical system will be slit limited rather than grating limited (see Section 

8.3). 

 Resolving power is generally measured in a spectrometer with a large 

focal length and very narrow slits in which the light source has fine 

                                                             
142 For additional reading, see J. Strong, “New Johns Hopkins ruling engine,” J. Opt. Soc. 
Am. 41, 3-15 (1951), J. F. Verrill, “The limitations of currently used methods for evaluating 
the resolution of diffraction gratings,” Opt. Acta 28, 177-185 (1981), and E. G. Loewen and 
E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (1997), pp. 423-432. 
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spectral structure; an example is the hyperfine spectrum of natural Hg 

near 546.1 nm (see Figure 11-7).  The spectral lines are identified, and the 

wavelengths of those that are distinguishable (‘resolvable’) are 

subtracted, and this difference  is divided into  = 546.1 nm according 

to Eq. (2-18); the smaller the wavelength difference, the greater the 

resolving power.   

 

Hyperfine Stucture of Natural Mercury 
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Figure 11-7.  Hyperfine structure of natural Hg near 546.1 nm.  Several spectral lines are 

identified.  Visual identification of two distinct emission lines centered on  and separated 

by  implies a resolving power at least as great as /. 

 Resolving power is measured on MKS diffraction gratings using 

a specially-designed Czerny-Turner spectrograph, whose concave mirrors 

have very long focal lengths (10 m) so that very large astronomical 

gratings may be tested (see Section 13.3). 

11.5. THE MEASUREMENT OF SCATTERED LIGHT143 

 As discussed in Chapters 2 and 10, light that leaves a grating surface 

that does not follow the grating equation (2-1) is called scattered light.  

                                                             
143 For additional reading, see J. F. Verrill, “The specification and measurement of 
scattered light from diffraction gratings,” Opt. Acta 25, 531-547 (1978). 
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Scattered light is generally measured in one of two ways: either with cut-

off filters (which absorb one part of the spectrum while transmitting the 

other part) or by using monochromatic light (from an atomic emission 

source or a laser, or using interference filters that transmit a narrow 

spectral range).   

 MKS has three specially-designed instruments to measure light 

scattered from small regions on the surface of a mirror or grating: two 

instruments use red HeNe light ( = 632.8 nm) to illuminate the grating, 

and the third uses a Hg source to illuminate the grating (the light 

reaching the detector is filtered to transmit a narrow spectral band 

around 254 nm).  These “scatter checkers” provide several degrees of 

freedom so that light scattered between diffraction orders (called inter-

order scatter)can be attributed to areas on the grating surface.   

 Figure 11-8 shows a simplified schematic diagram of the scatter 

checker.  The beam from a polarized HeNe laser is spatially filtered to 

remove speckle and is then directed onto a concave focusing mirror that 

brings the beam to focus at the detector plane.  The detector is a 

photomultiplier that, in combination with a programmable-gain current 

amplifier, provides eight decades of dynamic range.  A PC equipped with 

a data acquisition card is used to process and store the detector signal.  

 If an absolute scatter measurement is required, measurements are 

made by first obtaining a reference beam profile (see Figure 11-9), or 

“instrument signature,” by translating the test optic out of the way and 

rotating the detector through the beam in incremental steps over 

a predetermined angular range.  The test optic is then translated into the 

beam path and the detector passed through the reflected (or diffracted) 

beam from the test optic over the same angular range used to make the 

reference measurement.   The sample and reference beam profiles are 

“mirror images” of one another, so it is necessary to invert one before a 

comparison is made.  Any difference between the sample and reference 

beam profiles can be attributed to light scattered from the optic under 

test.   Relative scatter measurements do not require the characterization 

of the instrument signature. 

 It is important to apply the lessons of Chapter 10 to the interpretation 

of grating scatter measurements.  That is, even a “perfect” grating (as 

defined in Section 10.1.6) illuminated with monochromatic light will 

cause other diffraction orders to propagate, and some of this light energy 

may reach the detector of the scatter measuring apparatus.  This is  
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Figure 11-8.  Schematic of the MKS red HeNe scatter measuring apparatus.  To minimize 

the effects that other diffraction orders may have on the scattered light readings, this 

instrument is not enclosed so that any light that leaves the grating in a direction other than 

toward the detector will travel a long distance before encountering a reflecting or scattering 

surface. 

Scatter Checker Instrument Signature

1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

-50 -40 -30 -20 -10 0 10 20 30 40 50

Detector Angle (degrees)

S
ig

n
al

 (
ar

b
. 

u
n

it
s)

 

Figure 11-9.  Typical plot of data obtained from the MKS red HeNe scatter measuring 

instrument.  This plot of the measured signal vs. angle of rotation of the detector (from a 

diffracted order) shows the reference beam profile (the “instrument signature”). 
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important when comparing the scatter characteristics of a grating with 

those of a high-quality mirror (using the latter as a reference’); the mirror 

produces only the m = 0 order (specular reflection) and will therefore 

exhibit lower scatter than even a “perfect” grating.  This subtle point must 

be considered in defining the instrument signature of a grating-based 

optical system by using a mirror. 

 In analyzing grating scatter measurements, care must be taken to 

account for any stray light that is due to the measurement apparatus 

rather than the grating, as discussed in Sections 10.2 and 10.3. 

11.6. THE MEASUREMENT OF INSTRUMENTAL STRAY 

LIGHT 

 The consequence of undesired energy reaching the detector in a 

spectrometer is a reduction in photometric accuracy, since some light 

reaches the detector that cannot be attributed to the transmission (or 

absorption) of the sample at the analytical wavelength.   

 Instrumental stray light, like scattered light, is generally measured 

either with cut-off filters or monochromatic light.  

11.6.1. The use of cut-off filters144 

 Instrumental stray light is commonly measured by using a set of 

high-pass cut-off optical filters (whose transmission curves look like that 

in Figure 11-10).  The spectrometer is then scanned toward shorter 

wavelengths and the transmittance measured; once the transmittance 

level has reached a steady minimum (a plateau), this reading is taken to 

be the stray light.145 

 The instrument is tuned to the analytical wavelength  and a series of 

filters, each with a successively higher cut-off wavelength C (>), is 

placed in the beam and intensity readings taken at the detector.  

[Generally, C should exceed  by at least 20 nm, in the visible spectrum, 

to ensure than virtually no light of the analytical wavelength  passes 

                                                             
144 R. E. Poulson, “Test methods in spectrophotometry: stray-light determination,” Appl. 
Opt. 3, 99-104 (1964);  A. W. S. Tarrant, “Optical techniques for studying stray light in 
spectrometers,” Opt. Acta 25, 1167-1174 (1978);  ASTM standard E387, “Standard Test 
Method for Estimating Stray Radiant Power Ratio of Dispersive Spectrophotometers by the 
Opaque Filter Method” (2004). 

145 K. D. Mielenz, V. R. Weidner and R. W. Burke, “Heterochromic stray light in UV 
absorption spectrometry: a new test method,” Appl. Opt. 21, 3354-3356 (1982). 
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through the filter and complicates the readings.]  Nonzero readings 

indicate the presence of stray light.  A proper study requires 

measurements at more than one analytical wavelength since stray light 

properties cannot be easily extrapolated (due to the different wavelength 

dependencies of the causes of grating scatter and instrumental stray light 

noted above, and – for monochromators – the fact that all rays diffracted 

from or scattered by the grating change direction as the grating is 

rotated). 

 

 

Figure 11-10.  Transmission curve of a typical high-pass cut-off filter.  A filter of this type 

is generally specified by the cut-off wavelength C, the wavelength at which its transmission 

coefficient is 50%.  The slope of the transmission curve near C should be as steep as 

possible. 

11.6.2. The use of monochromatic light 

 Another method for measuring instrumental stray light is to replace 

the polychromatic light source (used with cut-off filters) with a narrow-

band monochromatic light source.  Atomic emission sources provide 

narrow spectral emission lines that can be used for this purpose; lasers 

can be used; and broad-spectrum sources can be used in conjunction with 

bandpass filters.   
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 Kaye146 describes a technique in which monochromatic light is used 

to determine the amount of power detected at all wavelength settings for 

a given input wavelength; this quantity is called the slit function.  The 

spectrometer (with slit widths w) is illuminated by light whose central 

wavelength is , and whose spectral width  is very narrow (<<).  

Scanning through the full wavelength range of the instrument (the 

wavelength setting being denoted by  ; see Section 10.1.6) and recording 

the power at each setting yields the slit function  wS , , which we may 

write as 

   wS ,  =     RwMcE , , (11-4) 

where E is the power emitted by the source,  wM ,  is the 

transmittance of the optical system (between the source and the 

detector), R is the sensitivity of the detector, and c is a constant of 

proportionality.  If we had knowledge of the slit function for all input 

wavelengths  and for all wavelength settings  , we would be able to 

write for any wavelength setting the following integral: 

   wS , =   wS ,

0




, (11-5) 

which represents the total power (for all wavelengths) recorded at 

wavelength setting  .  In practice, the bounds of integration are not 0 

and , but are instead determined by the spectral sensitivity limits of the 

detector. 

 Stray light can then be expressed as the ratio of the intensities 

(powers) of the scattered light and principal beam.147 

11.6.3. Signal-to-noise and errors in absorbance readings 

 Often the unwanted light in a spectrometer is quantified not by 

instrumental stray light but by the signal-to-noise ratio (SNR), a 

dimensionless quantity of more relevance to instrumental specification.  

                                                             
146 W. Kaye, “Resolution and stray light in near infrared spectroscopy,” Appl. Opt. 14, 
1977-1986 (1975). 

147 A. W. S. Tarrant, “Optical techniques for studying stray light in spectrophotometers,” 
Opt. Acta 25, 1167-1174 (1978); S. Brown and A. W. S. Tarrant, “Scattered light in 
monochromators,” Opt. Acta 25, 1175-1186 (1978). 
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The SNR is defined as the ratio of the signal (the desired power incident 

on the detector) to the noise (the undesired power, equivalent in our 

definition to the instrumental stray light).   

 Another specification of instrumental stray light is given in 

absorbance, a dimensionless quantity defined by 

  A = 








T

100
log10 , (11-6) 

where T is the percent transmittance (0  T  100).  Higher values of A 

correspond to lower transmittances, and instrumental stray light plays an 

important role in the highest value of A for which the readings are 

accurate; an instrument for which the stray light is about 1% as intense as 

the signal at a given wavelength cannot provide absorbance readings of 

any accuracy greater than A  2.   

 When the stray light power s is known (as a percentage of the signal), 

Eq. (11-6) may be modified to be made more accurate:148 

  A = 












sT

s100
log10 . (11-7) 

                                                             
148 A. Opler, “Spectrophotometry in the presence of stray radiation: a table of log[(100-
k)/(T-k)],” J. Opt. Soc. Am. 40, 401-403 (1950). 
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12. SELECTION OF DISPERSING SYSTEMS  
12.1. REFLECTION GRATING SYSTEMS 

 Reflection grating systems are much more common than 

transmission grating systems.  Optical systems can be 'folded' with reflec-

tion gratings, which reflect as well as disperse, whereas transmission 

grating systems are 'in-line' and therefore usually of greater length.  

Moreover, reflection gratings are not limited by the transmission proper-

ties of the grating substrate (or resin) and can operate at much higher 

angles of diffraction. 

12.1.1. Plane reflection grating systems   

 The choice of existing plane reflection gratings is extensive and 

continually increasing.  Master gratings as large as 320 mm x 420 mm 

have been ruled.  Plane gratings have been used for ultraviolet, visible 

and infrared spectra for some time; they are also used increasingly for 

wavelengths as short as 110 nm, an extension made possible by special 

coatings that give satisfactory reflectivity even at such short wavelengths 

(see Chapter 9). 

 The most popular arrangement for plane reflection gratings is the 

Czerny-Turner mount, which uses two spherical concave mirrors between 

the grating and the entrance and exit slits.  A single mirror arrangement 

(the Ebert-Fastie mount) can also be used.  Both achieve spectral 

scanning through rotation of the grating.  Collimating lenses are rarely 

used, since mirrors are inherently achromatic.  [See Chapter 6 for a 

discussion of plane grating mounts.] 

 For special purposes, plane reflection gratings can be made on       

unusual materials, such as ceramics or metals, given special shapes, or 

supplied with holes for Cassegrain and Coudé-type telescopic systems. 

12.1.2. Concave reflection grating systems 

 The great advantage in using concave gratings lies in the fact that 

separate collimating and focusing optics are unnecessary.  This is par-

ticularly important in the far vacuum ultraviolet region of the spectrum, 

for which there are no good normal-incidence reflectors.  Two mirrors, 

each reflecting 20% of the light incident on them, will reduce throughput 

by a factor of twenty-five.  Hence, concave grating systems are preferred 
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in the entire ultraviolet region.  Their chief deficiency lies in their 

wavelength-specific imaging properties, which leads to astigmatism, 

which in turn limits the exit slit size (and, consequently, the energy 

throughput).  The situation can be improved somewhat by using toroidal 

grating substrates; however, their use is restricted because of high costs. 

 Though most ruled gratings are flat, curved substrates can be ruled as 

well if their curvatures are not extreme.  Concave gratings are not only 

more difficult to rule than plane gratings, since the tool must swing 

through an arc as it crosses the substrate, but they require the spherical 

master substrate to have extremely high surface accuracy and tight 

tolerances on surface irregularity.   

 Another limitation of ruled concave gratings appears when they are 

ruled at shallow groove angles.  The ruled width is unfortunately limited 

by the radius of the substrate, since the diamond cannot rule useful 

grooves when the slope angle of the substrate exceeds the blaze angle.  

The automatic energy limitation that is thereby imposed can be overcome 

by ruling multipartite gratings, during which the ruling process is 

interrupted once or twice so that the diamond can be reset at a different 

angle.  The resulting bipartite or tripartite gratings are very useful, as 

available energy is otherwise low in the short wavelength regions.  One 

must not expect such gratings to have a resolving power more than that 

of any single section, for such an achievement would require phase 

matching between the grating segments to a degree that is beyond the 

present state of the art. 

 The advent of the holographic method of generating gratings has 

made the manufacture of concave gratings commonplace.  Since the 

fringe pattern formed during the recording process is three-dimensional, 

a curved substrate placed in this volume will record fringes.  Unlike ruled 

gratings, concave holographic gratings can be generated on substrates 

whose radii are fairly small (< 100 mm) and whose curvatures are fairly 

high (~ f/1 or beyond). 

12.2. TRANSMISSION GRATING SYSTEMS 

 In certain types of instrumentation, transmission gratings (see Figure 

12-1) are much more convenient to use than reflection gratings.  The most 

common configuration involves converting cameras into simple 

spectrographs by inserting a grating in front of the lens.  This 

configuration is often used for studying the composition of falling 

meteors or the re-entry of space vehicles, where the distant luminous 
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streak becomes the entrance slit.  Another application where high-speed 

lenses and transmission gratings can be combined advantageously is in 

the determination of spectral sensitivity of photographic emulsions. 

 

 

Figure 12-1.  Diffraction by a plane transmission grating. A beam of monochromatic light 

of wavelength  is incident on a grating at angle  to the grating normal and diffracted 

along several discrete paths {m}, for diffraction orders {m}.  The incident and diffracted 

rays lie on opposite sides of the grating.  The configuration shown, in which the 

transmission grating is illuminated from the back, is most common.   

 Transmission gratings can be made by stripping the aluminum film 

from the surface of a reflection grating.  However, since the substrate is 

now part of the imaging optics, special substrates are used, made to 

tighter specifications for parallelism, and those used in the visible region 

are given a magnesium fluoride (MgF2) antireflection coating on the back 

to reduce light loss and internal reflections.  The material used to form 

the substrate must also be chosen for its transmission properties and for 

the absence of bubbles, inclusions, striae and other imperfections, none 

of which is a concern for reflection gratings. 
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 In most cases, relatively coarse groove frequencies are preferred for 

transmission gratings, although gratings up to 600 g/mm are furnished 

routinely.  Experimentally, transmission gratings of 1200 g/mm have 

been used.  Energy distribution on either side of the blaze peak is very 

similar to that of reflection gratings in the scalar domain.  For wave-

lengths between 220 and 300 nm, transmission gratings are made on 

fused silica substrates with a special resin capable of high transmission 

for these wavelengths. 

 Since transmission gratings do not have a delicate metal film they are 

much more readily cleaned.  However, they are limited to spectral regions 

where substrates and resins transmit.  Their main drawback is that they 

do not fold the optical path conveniently as a reflection grating does.  

Moreover, to avoid total internal reflection, their diffraction angles 

cannot be extreme.  Even though the surface of the substrate is 

antireflection coated, internal reflections from the grating-air interface 

leads to some backward-propagating orders (that is, the transmission 

grating will also behave as a weak reflection grating); this limits the 

maximum efficiency to about 80%.149  The efficiency behavior of 

transmission gratings can be modeled adequately over a wide spectral 

range and for a wide range of groove spacing by using scalar efficiency 

theory.150   

 For a reflection grating of a given groove angle B with first-order 

blaze wavelength B, the transmission grating with the same groove angle 

will be blazed between B/4 and B/3, depending on the index of 

refraction of the resin.  This estimate is often very good, though it 

becomes less accurate for B > 25°. 

 Although there are cases in which transmission gratings are 

applicable or even desirable, they are not often used: reflection gratings 

are much more prevalent in spectroscopic and laser systems, due 

primarily to the following advantages: 

• Reflection gratings may be used in spectral regions where glass 

substrates and resins absorb light (e.g., the ultraviolet). 

• Reflection gratings provide much higher resolving power than 

equivalent transmission gratings, since the path difference 

                                                             
149 M. Nevière, “Electromagnetic study of transmission gratings,” Appl. Opt. 30, 4540-
4547 (1991). 

150 E. K. Popov, L. Tsonev and E. G. Loewen, “Scalar theory of transmission relief gratings,” 
Opt. Commun. 80, 307-311 (1991). 
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between neighboring beams (i.e., separated by a single groove) is 

higher in the case of the reflection grating – therefore 

transmission gratings much generally be wider (so that more 

grooves are illuminated) to obtain comparable resolving power. 

• Reflection grating systems are generally smaller than 

transmission grating systems since the reflection grating acts as a 

folding mirror. 

12.3. GRATING PRISMS (GRISMS) 

 For certain applications, such as a direct vision spectroscope, it is 

useful to have a dispersing element that will provide in-line viewing for 

one wavelength.  This can be done by replicating a transmission grating 

onto the hypotenuse face of a right-angle prism.  The light diffracted by 

the grating is bent back in-line by the refracting effect of the prism.  The 

device is known as a Carpenter prism, but is more commonly called a 

grism. 

 The derivation of the formula for computing the required prism angle 

follows (refer to Figure 12-2).  On introducing Snell's law, the grating 

equation becomes 

  m= d (n sin + n' sin), (12-1) 

where n and n' are the refractive indices of glass and air, respectively, and 

 < 0 since the diffracted ray lies on the opposite side of the normal from 

the incident rays ( > 0).   

 Taking n' = 1 for air, and setting  = – = , the prism angle, Eq. (12-

1) becomes 

  m= d (n–1) sin. (12-2) 

In this derivation it is assumed that the refractive index n of the glass is 

the same (or very nearly the same) as the index nE of the resin at the 

straight-through wavelength .  While this is not likely to be true, the 

resulting error is often quite small.   

 The dispersion of a grating prism cannot be linear, owing to the fact 

that the dispersive effects of the prism are superimposed on those of the 

grating.  The following steps are useful in designing a grism:  

1. Select the prism material desired (e.g., BK-7 glass for visible light 

or fused silica for ultraviolet light). 
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2. Obtain the index of refraction of the prism material for the 

straight-through wavelength. 

 

 

Figure 12-2.  Grating prism (grism).  The ray path for straight-through operation at one 

wavelength is shown.  The refractive indices of the prism, resin and air are indicated as n, 

nE and n, respectively; also,  is the prism angle and  is the groove angle.  The incidence 

angle  and diffraction angle  are measured from GN, the grating normal.  

3. Select the grating constant d for the appropriate dispersion 

desired. 

4. Determine the prism angle  from Eq. (12-2). 

5. For maximum efficiency in the straight-through direction, select 

the grating from the Diffraction Grating Catalog with groove 

angle  closest to . 

 Design equations for grism spectrometers may be found in Traub.151  

                                                             
151 W. A. Traub, “Constant-dispersion grism spectrometer for channeled spectra,” J. Opt. 
Soc. Am. A7, 1779-1791 (1990). 
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12.4. GRAZING INCIDENCE SYSTEMS152 

 For work in the x-ray region (roughly the wavelength range 1 nm <  

< 25 nm), the need for high dispersion and the normally low reflectivity 

of materials both demand that concave gratings be used at grazing inci-

dence (i.e., || > 80°, measured from the grating normal).  Groove 

spacings of 600 to 1200 per millimeter are very effective, but exceptional 

groove smoothness is required on these gratings to achieve good results. 

12.5. ECHELLES 

 A need has long existed for spectroscopic devices that give higher 

resolution and dispersion than ordinary gratings, but with a greater free 

spectral range than a Fabry-Perot etalon.  This need is admirably filled by 

the echelle grating, first suggested by Harrison.153  Echelles have been 

used in a number of applications  that require compact instruments with 

high angular dispersion and high throughput. 

 Echelles are a special class of gratings with coarse groove spacings, 

used in high angles in high diffraction orders (rarely below |m| = 5, and 

sometimes used in orders beyond m = 100).  Because of spectral order 

overlap, some type of filtering is normally required with higher-order 

grating systems.  This can take several forms, such as cut-off filters, 

detectors insensitive to longer wavelengths, or cross-dispersion in the 

form of prisms or low-dispersion gratings.  The latter approach leads to a 

square display format suitable for corresponding types of array detectors; 

with such a system a large quantity of spectroscopic data may be recorded 

simultaneously.154  First-order design principles for echelle spectrometers 

using a cross-disperser have been developed by Dantzler.155 

 As seen in Figure 12-3, an echelle looks like a coarse grating used at 

such a high angle (typically 63° from the normal) that the steep side of 

                                                             
152 W. Cash, “Echelle spectrographs at grazing incidence,” Appl. Opt. 21, 710-717 (1982);  L. 
B. Mashev, E. K. Popov and E. G. Loewen, “Optimization of the grating efficiency in grazing 
incidence,” Appl. Opt. 26, 4738-4741 (1987);  L. Poletto, G. Tondello and P. Villoresi, 
“Optical design of a spectrometer-monochromator for the extreme-ultraviolet and soft x-
ray emission of high-order harmonics,” Appl. Opt. 42, 6367-6373 (2003). 

153 G. R. Harrison, “The production of diffraction gratings II: The design of echelle gratings 
and spectrographs,” J. Opt. Soc. Am. 39, 522-528 (1949). 

154 D. Dravins, “High-dispersion astronomical spectrographs with holographic and ruled 
diffraction gratings,” Appl. Opt. 17, 404-414 (1978). 
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the groove becomes the optically active facet.  Typical echelle groove 

spacings are 31.6, 79 and 316 g/mm, all blazed at 63°26' (although 76° is 

available for greater dispersion).  With these grating, resolving powers 

greater than 1,000,000 for near-UV wavelengths can be obtained, using 

an echelle 10 inches wide.  Correspondingly high values can be obtained 

throughout the visible spectrum and to 20 µm in the infrared.   

 Since echelles generally operate close to the Littrow mode at the blaze 

condition, the incidence, diffraction and groove angles are equal (that is, 

 
 

 

Figure 12-3.  Echelle geometry for use in the Littrow blaze condition.  The groove spacing 

d, step width t and step height s are shown.  The double-headed arrow indicates that the 

grating is used in the Littrow configuration ( = ), and  was chosen to equal the groove 

angle  to satisfy the blaze condition.  GN is the grating normal and FN is the facet normal.  

The blaze arrow (shown) points from GN toward FN. 

 =  = ) and the grating equation becomes 

  m = 2d sin= 2d sin= 2t, (12-3) 

where t = d sin is the width of one echelle step (see Figure 12-3). 

 The free spectral range is 

  F  = 
m


, (2-29) 

                                                                                                                                        
155 A. A. Dantzler, “Echelle spectrograph software design aid,” Appl. Opt. 24, 4504-4508 
(1985). 
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which can be very narrow for high diffraction orders.  From Equation (12-

3), m = 2t/, so  

  F = 
t2

2
 (12-4) 

for an echelle used in Littrow.  In terms of wavenumbers*, the free 

spectral range is 

  F  = 
2


= 

t2

1
. (12-5) 

The linear dispersion of the spectrum is, from Eq. (2-16), 

  r' 





















 t

s

r

s

rm

d

rm 2

cos
, (12-6) 

where s = d cos = d cos is the step height of the echelle groove (see 

Figure 12-3).   The dispersion of an echelle used in high orders can be as 

high as that of fine-pitch gratings used in the first order. 

 The useful length l of spectrum between two consecutive diffraction 

orders is equal to the product of the linear dispersion and the free 

spectral range: 

  
s

r
l


 . (12-7) 

For example, consider a 300 g/mm echelle with a step height s = 6.5 µm, 

combined with an r' = 1.0 meter focal length mirror, working at a 

wavelength of  = 500 nm.  The useful length of one free spectral range of 

the spectrum is l = 77 mm. 

 Typically, the spectral efficiency reaches a peak in the center of each 

free spectral range and drops to about half of this value at the ends of the 

range.  Because the ratio /d is generally very small (<< 1) for an echelle 

used in high orders (m >> 1), polarization effects are not usually 

pronounced, and scalar methods may be employed in many cases to 

                                                             
* A wavenumber is a unit proportional to inverse wavelength and is often used in the 

infrared.  The definition of a wavenumber  in inverse centimeters (cm–1) is  = 10000/, 

where  is expressed in m. 
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compute echelle efficiency.156  Echelle efficiency has been addressed in 

detail by Loewen et al.157 

 The steep angles and the correspondingly high orders at which 

echelles are used make their ruling much more difficult than ordinary 

gratings.  Periodic errors of ruling must especially be limited to a few 

nanometers or even less, which is attainable only by using interferometric 

control of the ruling engine.  The task is made even more difficult by the 

fact that the coarse, deep grooves require heavy loads on the diamond 

tool.  Only ruling engines of exceptional rigidity can hope to rule echelles.  

This also explains why the problems escalate as the groove spacing 

increases. 

 An echelle is often referred to by its "R number", which is the tangent 

of the blaze angle : 

  R number = tan = 
s

t
 (12-8) 

The lengths s and t are shown in Figure 12-2.  An R2 echelle, for example, 

has a blaze angle of tan–1(2) = 63.4°; an R5 echelle has a blaze angle of 

tan–1(5) = 78.7°. 

 

R number Groove angle 

R1 45.0° 

R2 63.4° 

R3 71.6° 

R3.5 74.1° 

R4 76.0° 

R5 78.7° 

R6 80.5◦ 

Table of common R numbers.   

  

                                                             
156 D. J. Schroeder and R. L. Hilliard, “Echelle efficiencies: theory and experiment,” Appl. 
Opt. 19, 2833-2841 (1980);  B. H. Kleeman and J. Erxmeyer, “Independent 
electromagnetic optimization of the two coating thicknesses of a dielectric layer on the 
facets of an echelle grating in Littrow mount,” J. Mod. Opt. 51, 2093-2110 (2004). 

157 E. G. Loewen, D. Maystre, E. Popov and L. Tsonev, “Echelles: scalar, electromagnetic 
and real groove properties,” Appl. Opt. 34, 1707-1727 (1995);   E. G. Loewen, D. Maystre, E. 
Popov and L. Tsonev, “Diffraction efficiency of echelles working in extremely high orders,” 
Appl. Opt. 35, 1700-1704 (1996); 
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 Instruments using echelles can be reduced in size if the echelles are 

“immersed” in a liquid of high refractive index n (see Figure 12-4).  This 

has the effect of reducing the effective wavelength by n, which is 

equivalent to increasing the diffraction order, resolving power and 

dispersion of the echelle (compared with the same echelle that is not 

immersed).158  A prism is usually employed to couple the light to the 

grating surface, since at high angles most of the light incident from air to 

the high-index liquid would be reflected.   Often an antireflection (AR) 

coating is applied to the normal face of the prism to minimize the amount 

of energy reflected from the prism.159 

12.6. IMMERSED GRATINGS160 

 Unlike a grism (see Section 12.4 above), an immersed grating 

couples a prism to a reflection grating rather than a transmission grating.  

Instruments using gratings can be reduced in size if the gratings are 

“immersed” in a material of high refractive index n, usually an optically 

transmissive liquid or gel (see Figure 12-4).  This has the effect of 

reducing the effective wavelength by n, which is equivalent to increasing 

the diffraction order, resolving power and dispersion of the grating 

(compared with the same grating that is not immersed).161  A prism is 

usually employed to couple the light to the grating surface, since at high 

angles most of the light incident from air to the high-index liquid would 

be reflected.   Often an antireflection (AR) coating is applied to the 

normal face of the prism to minimize the amount of energy reflected from 

the prism.162 

 

                                                             
158 D. Enard and B. Delabre, “Two design approaches for high-efficiency low-resolution 
spectroscopy,” Proc. SPIE 445, 522-529 (1984);  G. Wiedemann and D. E. Jennings, 
“Immersion grating for infrared astronomy,” Appl. Opt. 32, 1176-1178 (1993). 

159 C. G. Wynne, “Immersed gratings and associated phenomena. I,” Opt. Commun. 73, 
419-421 (1989);  C. G. Wynne, “Immersed gratings and associated phenomena. II,” Opt. 
Commun. 75, 1-3 (1990). 

160 D. Lee and J. R. Allington-Smith, “An experimental investigation of immersed 
gratings,” Mon. Nor. R. Astron. Soc. 312, 57-69 (2000). 

161 D. Enard and B. Delabre, “Two design approaches for high-efficiency low-resolution 
spectroscopy,” Proc. SPIE 445, 522-529 (1984);  G. Wiedemann and D. E. Jennings, 
“Immersion grating for infrared astronomy,” Appl. Opt. 32, 1176-1178 (1993). 

162 C. G. Wynne, “Immersed gratings and associated phenomena. I,” Opt. Commun. 73, 
419-421 (1989);  C. G. Wynne, “Immersed gratings and associated phenomena. II,” Opt. 
Commun. 75, 1-3 (1990). 
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Figure 12-4.  An immersed echelle grating used near Littrow.  In this example, the 

incident beam enters the prism normally at its face, so the prism contributes no angular 

dispersion to the grism (except for what little results from Snell’s Law when the diffracted 

ray leaves the prism). 
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1133..  APPLICATIONS OF DIFFRACTION 

GRATINGS    
 

13.1. GRATINGS FOR INSTRUMENTAL ANALYSIS 

 The most common use for the diffraction grating is to serve as the 

wavelength separation device in an analytical laboratory instrument in 

which matter is analyzed by studying its interaction with light (this 

analysis is called spectroscopy).  The spectral separation of the 

wavelengths is not strictly required for this interaction; instead its 

purpose is to provide data that can be interpreted unambiguously.   

 The techniques of analytical chemistry (i.e., that branch of chemistry 

that determines the chemical composition of a substance by measuring 

its physical properties) may be considered qualitative or quantitative.  A 

qualitative technique seeks to identify what is present; a quantitative 

technique seeks to determine how much is present.  Grating-based optical 

systems can be used to identify or to quantify, by using the properties of 

light that is absorbed or emitted by a substance (called absorption 

spectroscopy and emission spectroscopy, respectively). 

 Most instruments designed for absorption spectroscopy are 

composed of four primary elements (see Figure 13-1): a light source, a 

monochromator, a sample illumination system, and a detector.  

Sometimes the monochromator and sample illumination system are 

interchanged (that is, some instruments disperse the light before it 

interacts with the sample, and some do this afterwards).  Some 

instruments use a spectrograph instead of a monochromator so that the 

entire spectrum may be recorded at once. 

13.1.1. Atomic and molecular spectroscopy163 

 The field of atomic spectroscopy started with the observation by 

Balmer that the discrete spectral lines emitted by a hydrogen source in 

the ultraviolet had wavelengths that could be predicted by a simple 

formula; with the development of quantum physics, the existence of a 

unique and predictable set of discrete emission (and absorption) 

                                                             
163 E.g., S. Svanberg, Atomic and Molecular Spectroscopy, 4th ed., Springer-Verlag (Berlin, 
Germany: 2004). 
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wavelengths for each chemical element was hypothesized and 

subsequently observed.  We now defined atomic absorption spectroscopy 

as the measurement of the light absorbed by ionized atoms, and atomic 

emission spectroscopy as the measurement of light emitted by energized 

atoms or ions.  Both the wavelength and the intensity of the light can be 

measured using monochromators and spectrographs to provide 

information about the atomic species. 

 

 

Figure 13-1.  Elements of an Absorption Spectrometer.  Light from a broad-spectrum 

source, such as deuterium (D2) or tungsten (W), is transmitted through the absorbing 

sample to be analyzed and focused through the entrance slit of a monochromator (or 

spectrograph), and the intensity of the light at each wavelength is recorded, producing an 

absorption spectrum.  In (a) the sample is illuminated by light after it has been spectrally 

tuned by the monochromator; in (b) the sample is illuminated by the broad spectrum. 

 Atomic absorption and emission spectrophotometers are generally 

used to identify elements and measure their concentrations.  Primary 

applications include the manufacture of steel, mining, and waste & 

recycling. Many atomic emission instruments use an inductively coupled 

plasma (ICP) composed of the atoms to be studied as the light source. 

 Molecular spectroscopy instrumentation is generally designed to 

transmit light through a molecular species (often in a liquid suspension) 

and measure the absorption at each wavelength.   

 Atomic and molecular spectroscopy is usually undertaken in the UV, 

visible and IR portions of the spectrum, since atomic and molecular 

transition energies lie in this range.  Atomic spectrophotometers are most 

often designed for use in the UV and visible parts of the spectrum; many 

go as far into the UV as the 167 nm aluminum line, which requires 

purging or a partial vacuum to eliminate the absorption due to the 

atmosphere.    Instruments used for molecular spectroscopy extend to 

higher wavelengths than atomic spectrophotometers, through the visible 

and into the near-infrared.  Generally, one instrument will cover only a 
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portion of this wide spectral range, leading to the classifications of UV 

spectrometers, UV-visible spectrometers, visible spectrometers and IR 

spectrometers.  

 Both the wavelength and the intensity of the light can be measured 

using monochromators and spectrographs to provide information about 

the atomic species. 

13.1.2. Fluorescence spectroscopy164 

 Many atomic and molecular species fluoresce; that is, they absorb 

energy in the UV-visible spectral region and rapidly emit most of that 

energy (the remainder being converted to heat or vibrational energy in 

the medium).  Generally, this emission takes place on the order of 

nanoseconds after absorption, and (because of the energy loss) the 

emission spectrum will appear at higher wavelengths than the excitation 

spectrum (or, usually, a single excitation spectral line).  Fluorescent 

compounds may be identified by their unique fluorescence spectra; in 

some applications, a non-fluorescent material may be tagged with a 

fluorescent dye or fluorophore so that the non-fluorescent material may 

be detected using fluorescence instrumentation. 

 Fluorescence instrumentation generally contains an excitation 

monochromator, serving as a tunable filter for the excitation light, and an 

emission spectrometer to disperse the emission spectrum (see Figure 13-

2).    

13.1.3. Colorimetry165 

 Colorimetry is the measurement and specification of color, used in 

analytical chemistry, color matching, color reproduction and appearance 

studies.  Because color as perceived cannot be associated with a single 

wavelength – it is a more complicated function of how the three different 

light receptors in the human eye respond to the entire visible spectrum 

when looking at an object – it is common to use a multiwavelength 

instrument such as a grating spectrometer. 

 

                                                             
164 E.g., J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer-Verlag 
(New York, New York: 2006). 

165 E.g., C. J. Kok and M. C. Boshoff, “New spectrophotometer and tristimulus mask 
colorimeter,” Appl. Opt. 10, 2617-2620 (1971);  T. H. Chao, S. L. Zhuang, S. Z. Mao and F. 
T. S. Yu, “Broad spectral band color image deblurring,” Appl. Opt. 22, 1439-1444 (1983). 
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Figure 13-2.  Elements of a Fluorescence Spectrometer.  Light from a broad-spectrum 

source is spectrally tuned by an excitation monochromator; a spectrally narrow beam 

emerging from this monochromator is absorbed by the sample.  The fluorescence spectrum 

of the sample is viewed (generally at an angle perpendicular to the excitation beam) and 

resolved by an emission monochromator. 

13.1.4. Raman spectroscopy166 

 interaction of light with matter falls into two broad categories: 

absorption (on which absorption spectroscopy and fluorescence 

spectroscopy are based), and scattering.  Light can scatter elastically (i.e., 

energy is conserved) or inelastically – the latter is called Raman 

scattering, and the study of the spectrum of inelastically scattered light 

from matter is called Raman spectroscopy.  Since the ratio of intensities 

of inelastically scattered light to elastically scattered light is generally 

under 10–6, the reduction of instrumental stray light in Raman 

spectrometers is of paramount importance. 

13.1.5. Hyperspectral systems167 

  Hyperspectral imaging is a technique that creates a spectrum at each 

pixel in an image: it provides both spatial resolution and spectral 

resolution.  Use of hyperspectral imaging is growing; for example, 

                                                             
166 E.g., E. Smith & G. Dent, Modern Raman Spectroscopy: A Practical Approach, John 
Wiley & Sons, Ltd (Chichester, England: 2005) 

167 E.g., C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and 
Classification, Kluwer (New York, New York: 2003). 
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hyperspectral remote sensing has been used to inspect food, detect the 

early outbreak of drought and disease in crops, and diagnose disease in 

humans. 

13.2. GRATINGS IN LASER SYSTEMS 

 Diffraction gratings are also used in laser systems to perform several 

functions: to tune the lasing wavelength, to narrow the distribution of 

wavelengths in the laser, and to control the pulse shape (vs. time). 

13.2.1. Laser tuning168 

 Lasing media have characteristic gain curves that describe the lasing 

intensity vs. wavelength.  In order to “tune” the laser to a wavelength with 

higher gain with the gain curve, a grating can be used at one end of the 

resonant cavity (in place of a mirror); using a grating instead of a mirror 

will disperse the wavelengths in the laser, and the grating can be oriented 

so that the desired wavelength propagates back into the lasing 

medium.169   

 External-cavity semiconductor diode lasers are often used for their 

single-mode operation and spectral tunability.  Plane reflection gratings 

can be used in the Littrow configuration to tune the lasing wavelength, as 

shown in Figure 13-3, or in the grazing-incidence mount.   

 

 

Figure 13-3.  Tuning a dye laser – the grating as a total reflector in the Littrow 

configuration.  Light from the dye laser cell is diffracted by the grating G, which is oriented 

so that light of the desired wavelength is redirected back toward the cell; the output beam is 

transmitted by an output coupler OC (which reflects most of the light back into the laser).  

The wavelength is tuned by rotating the grating.  

                                                             
168 F. J. Duarte, Tunable Laser Optics, Academic Press (San Diego, California: 2003). 

169 T. M. Hard, “Laser wavelength selection and output coupling by a grating,” Appl. Opt. 
9, 1825-1830 (1970);  A. Hardy and D. Treves, “Modes of a diffraction grating optical 
resonator,” Appl. Opt. 14, 589-592 (1975);  T. W. Hänsch, “Repetitively pulsed tunable dye 
laser for high resolution spectroscopy,” Appl. Opt. 11, 895-898 (1971);  S. O. Kanstad & G. 
Wang, “Laser resonators folded by diffraction gratings,” Appl. Opt. 17, 87-90 (1978). 
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In some systems a beam expander is used to illuminate a larger area on 

the grating surface, to achieve high resolution and/or to reduce the power 

density on the grating surface (since a high-power laser may damage the 

grating).  Since the grating will allow the zero-order to propagate as well 

as the (Littrow) diffraction order, the output beam may be taken from the 

grating as in Figure 13-4. 

 Grazing-incidence tuning with one grating associated with a mirror 

(or a second grating) can also be used to tune dye lasers without the need 

for a beam expander, leading to a more compact laser cavity; this is called 

the Littman-Metcalf design170  and is shown in Figure 13-5.  

 

 

Figure 13-4.  Tuning a dye laser – the grating as output reflector.  In this case, the zero-

order from the grating G is the output beam, and the output coupler in Figure 13-3 is 

replaced by a mirror. The wavelength is tuned by rotating the grating. 

 

Figure 13-5.  The Littman-Metcalf arrangement.  The light diffracted by grating G is 

retroreflected by mirror M, which diffracts the light again back into the dye laser cell. 

                                                             
170 M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam 
expander,” Appl. Opt. 17, 2224-2227 (1978). 
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 Molecular lasers, operating in either a pulsed or continuous-wave 

(cw) mode, have their output wavelength tuned by Littrow-mounted 

gratings.  High efficiency is obtained by using the first diffraction order at 

diffraction angles || > 20°.  The output is polarized in the S-plane, since 

the efficiency in the P plane is quite low.   

 Some molecular lasers operate at powers high enough to destroy 

gratings.  For pulsed laser tuning, extra-thick replica films may help.  Due 

to their far greater thermal conductivity, replica gratings on metal 

substrates are superior to glass for cw laser applications; in some cases, 

the grating substrates must be water-cooled to prevent failure. 

 Excimer lasers – used in surgery, micromachining and 

photolithography – generally select a narrow spectral range from the 

emission profile by using an echelle grating in the Littrow 

configuration.171  A coarse echelle (d > 10 m) is used in very high 

diffraction orders (m >> 10) at very high incidence angles ( = 65° to 79°) 

in order to obtain high dispersion (see Eq. (2-15)).  At such an oblique 

angle, a beam with circular cross section will illuminate an ellipse on the 

grating that is three to five times wider in the dispersion direction than it 

is in the cross-dispersion direction. 

13.2.2. Pulse stretching and compression172 

 For optical systems employing lasers with very high peak powers, 

such as those that use temporally short (< 1 picosecond) yet energetic ( 1 

Joule) pulses, the required damage thresholds of the optical components 

in the system can exceed the performance of state-of-the-art components.  

Strickland and Mourou173 demonstrated that such pulses can be stretched 

(in time) so that their pulse energy is spread out over a large time period 

(thereby reducing the peak power) and then compressed using a grating 

compressor to return the pulse to its original temporal profile.  Between 

the two operations (stretching and compression), optical components are 

exposed to much lower peak powers than that of the original (or final) 

                                                             
171 R Buffa, P Burlamacchi, R Salimbeni and M Matera, “Efficient spectral narrowing of a 
XeCl TEA laser,” J. Phys. D: Appl. Phys. 16 L125-L128 (1983);  J. P. Partenen, “Multipass 
grating interferometer applied to line narrowing in excimer lasers,” Appl. Opt. 25, 3810-
3815 (1986). 

172 E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Elec. 
5, 454-458 (1969). 

173 D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. 
Comm. 56, 219-221 (1985). 
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pulse.  By amplifying the pulse between the stretcher and compressor, 

higher peak power pulses may be obtained.   

 A dual-grating pulse stretcher is shown in Figure 13-6. 

 

 

Figure 13-6.  A grating-based pulse stretcher.  Intermediate lenses are not shown. 

13.3. GRATINGS IN ASTRONOMICAL APPLICATIONS 

 Much of what we know of the universe is due to our analysis of light 

reaching the earth from planets, stars and galaxies.  Grating-based 

spectrometers play a key role in astronomical measurements.  For 

example, the spectroscopic analysis of starlight allows us to determine 

the composition of stars as well as their relative velocities.  The analysis 

of absorption lines in starlight that passes through nebulae allows us to 

determine the composition of the nebulae.  From the analyses of these 

emission and absorption spectra, we can infer ages of stars, distances to 

galaxies, etc. 

13.3.1. Ground-based astronomy174 

 Ground-based astronomical telescopes generally have quite large 

apertures, to maximize the light energy collected from distant 

astronomical objects; this leads to the need for very large gratings to 

spectrally disperse the light received.  Often these gratings are so large 

that their resolving power exceeds the value for which the spectrometer’s 

resolution would be grating-limited; that is, in most cases the grating is 

‘better’ than the instrument’s resolution requires. 

                                                             
174 E.g., W. Liller, “High dispersion stellar spectroscopy with an echelle grating,” Appl. Opt. 
9, 2332-2336 (1970);  D. J. Schroeder, Astronomical Optics, Academic Press (San Diego, 
California: 1987).   
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 The MIT 'B' engine can rule large echelles and echellettes up to 320 

mm x 420 mm in size (which provides a ruled area of 308 mm x 408 

mm), suitable for all but the largest ground-based astronomical 

instruments.175   

 The requirement for even larger gratings for ground-based 

astronomical telescopes has led to three alternative solutions: a static 

fixture to hold smaller gratings in a larger configuration, an adjustable 

fixture with optical feedback to move the gratings with respect to each 

other (to maintain focus)176, and a mosaic grating produced by high-

accuracy multiple replication onto a single substrate.177  Such monolithic 

mosaic gratings have the advantage of long-term alignment stability over 

the other two alternatives. 

 In the 1990s, Richardson Gratings developed the capability to 

replicate two large submaster gratings onto one monolithic substrate.  

Except for a “dead space” between the two replicated areas, the entire 

face of the larger product substrate contains the groove pattern.  This 

mosaic grating must have its two grating areas aligned to very high 

accuracy if the mosaic is to perform as one high-quality grating.  Typical 

specifications for two 308 mm x 408 mm ruled areas on a 320 mm x 840 

mm substrate are one arc second alignment of the groove directions, one 

arc second tilt between the two faces, and one micron displacement 

between the two grating planes.  

 A large mosaic echelle grating produced by Richardson Gratings for 

the European Southern Observatory is shown in Figure 13-7.  Two 

submasters from MKS master grating MR160 (a 31.6 g/mm echelle 

blazed at 75.1) were independently replicated onto a large monolithic 

substrate to form this mosaic grating; the two halves of its surface are 

clearly seen in the photograph.   

                                                             
175 S. S. Vogt and G. D. Penrod, “HiRES: A high resolution echelle spectrometer for the 
Keck 10-meter telescope,” in Instrumentation for Ground-Based Astronomy, L. B. 
Robinson, ed. (Springer-Verlag, New York: 1988), pp. 68-103. 

176 G. A. Brealey, J. M. Fletcher, W. A. Grundmann and E. H. Richardson, “Adjustable 
mosaic grating mounts,” Proc. SPIE 240, 225-228 (1980). 

177 H. Dekker and J. Hoose, “Very high blaze angle R4 echelle mosaic,” Proc. ESO 
Workshop on High Resolution Spectroscopy, M.-H. Ulrich, ed., p. 261 (1992);   J. Hoose et 
al., "Grand Gratings: Bigger is Better, Thanks to Mosaic Technology," Photonics Spectra 
29, 118-120 (December 1995);  T. Blasiak and S. Zheleznyak, "History and construction of 
large mosaic diffraction gratings," Proc. SPIE 4485, 370-377 (2002). 
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 Figure 13-8 shows a six-inch aperture Fizeau interferogram of an 

echelle mosaic (31.6 g/mm) in the m = 98th order, tested at  = 632.8 nm.  

The grooves are vertical in the photos and the blaze arrow is facing left.  

One fringe over this aperture is 0.43 arc seconds.  These measurements 

indicate that the two sides of the mosaic are aligned to 0.3 arc seconds. 

 Figure 13-9 shows a focal plane scan on a ten-meter optical test 

bench using a mode-stabilized HeNe laser ( = 632.8 nm) as the light 

source.  The entrance slit width is 25 microns, and the exit slit is opened 

just enough to get signal through.  The grating is operating in the m = 97th 

order with full aperture illumination.  The image is dominated by the 

wavefront characteristics of the individual segments, but still indicates a 

system resolving power better than R = 900,000. 

 

 

Figure 13-7.  A large mosaic grating.  A monolithic 214 x 840 mm replica mosaic grating 

was produced from two 214 x 415 mm submasters replicated onto a single piece of 

ZERODUR®.  
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Figure 13-8.  Six-inch-aperture Fizeau interferograms of a 31.6 g/mm echelle mosaic 

produced from two 214 x 415 mm submasters.  The photograph on the left shows 

alignment perpendicular to the grooves; that on the right shows alignment in the direction 

of the grooves.  These interferograms were taken in the 98th diffraction order. 
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Figure 13-9.  Signal trace of a 31.6 g/mm echelle mosaic at 632.8 nm in the 97th order.   
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 The first exosolar planet seen orbiting a main sequence star was 

discovered in 1995 using the Elodie spectrograph at the Observatoire de 

Haute-Provence in France.178  This discovery was the first to employ the 

radial velocity method (also known as Doppler spectroscopy), which 

detects very small periodic shifts in the wavelengths of the features of the 

emission spectrum of a star due to its motion about its common center of 

mass with nearby objects.  This spectrograph uses a Richardson Gratings 

R4 echelle as its primary dispersive component.  The 2019 Nobel Prize in 

Physics was awarded in part for this discovery.179 

 This discovery was based on the detection of a Doppler shift 

corresponding to a change in the star 51 Pegasi’s radial velocity (over the 

period of the planet) of about 100 m/s.   Since the construction of the 

Elodie spectrograph, more sensitive Doppler spectrometers have been 

designed and constructed and are in use in telescopes around the world; 

the newest instruments can detect a radial velocity change of 1 m/s.180 

13.3.2. Space-borne astronomy181 

 Neither master nor replica gratings suffer in any measurable way 

over extended periods of time in a space environment.  Since most space 

work involves the study of ultraviolet (UV) and extreme ultraviolet (EUV) 

wavelengths, special problems exist in setting and aligning the optics.  

For this purpose, MKS can rule gratings matching the EUV grating but 

with a groove spacing modified so that the mercury 546.1-nm line lies in 

the spectrum just where the main wavelength under study will lie.  

Another possibility is to rule a small section on the main grating with 

similar coarse spacings and then mask off this area when the alignment is 

complete.  Sometimes special tolerances on substrate radii are required 

for complete interchangeability. 

                                                             
178 M. Mayor & D. Queloz, “A Jupiter-mass companion to a solar-type star”, Nature 378, 
355-359 (1995). 

179 Press release: The Nobel Prize in Physics 2019 (nobelprize.org). 

180 E.g., M. Mayor et al., “Setting New Standards with HARPS,” ESO Messenger 114, 20 
(2003). 

181 E.g., J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee Jr., R. G. Cruddace and J. 
C. Rife, “Normal-incidence efficiencies in the 115-340-Å wavelength region of replicas of 
the Skylab 3600-line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453-
6458 (1995). 
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13.3.3. Space travel 

 A method of spacecraft propulsion has been proposed by Srivastava 

et al. using ‘light sails’ propelled by powerful lasers based on Earth.182  

Previous designs had proposed the use of mirrors; the use of gratings 

instead allows for a mechanism to keep the sails from drifting out of 

alignment.  The experimental demonstration of a light sail based on 

diffraction gratings was reported in 2019 by Chu et al.183 

13.4. GRATINGS IN SYNCHROTRON RADIATION 

BEAMLINES184 

 Synchrotron radiation is generated by electrons traveling in circular 

orbits at relativistic speeds; this radiation covers the x-ray through 

infrared portions of the electromagnetic spectrum and may be used to 

investigate the electronic properties of matter.  Synchrotron beamlines 

are optical systems oriented tangentially to synchrotron rings, and often 

gratings are used to disperse the portion of the radiation in the extreme 

ultraviolet (UV) and vacuum ultraviolet (VUV) spectra.185   

13.5. SPECIAL USES FOR GRATINGS186 

 In addition to the “traditional” uses of gratings – in analytical 

instruments, lasers and astronomy – there are several additional uses for 

which diffraction gratings are well-suited. 

13.5.1. Gratings as filters 

 Diffraction gratings may be employed as reflectance filters when 

working in the far infrared, to remove the unwanted second- and higher- 

                                                             
182 P. R. Srivastava et al., “Stable diffractive beam rider,” Opt. Lett. 44(12), 3082-3085 
(2019). 

183 Y.-J. L. Chu et al., “Experimental Verification of a Bigrating Beam Rider”, Phys. Rev. 
Lett. 123, 244302 (2019). 

184 E.g., G. Margaritondo, Introduction to Synchrotron Radiation, Oxford University Press 
(New York, New York: 1988). 

185 D. L. Ederer, ed., Selected Papers on VUV Synchrotron Radiation Instrumentation – 
Beam Line and Instrument Development, SPIE Milestone Series vol. MS 152, SPIE 
(Bellingham, Washington: 1998). 

186 E.g., B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed., Wiley 
Interscience (Hoboken, New Jersey: 2012). 
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diffraction orders from the incident light.187  For this purpose, small 

plane gratings are used that are blazed for the wavelength of the 

unwanted shorter-wavelength radiation.  The grating acts as a mirror for 

the longer-wavelength light, reflecting the desired light into the 

instrument, while diffracting shorter wavelengths out of the optical path.  

The groove spacing d must be chosen so that   

  sin > 1  for all > C, (13-1) 

where C is a wavelength between the short wavelengths to be diffracted 

and the long wavelengths to be reflected (see Eq. (2-1)). 

 A grating can also be used as a color filter if it is illuminated such that 

its zero-order efficiency is highly wavelength-dependent.188   

 It should be recognized that a diffraction grating by itself cannot 

serve as a spectral bandpass filter.  The grating provides spectral 

dispersion but not spectral resolution, so the analogue of a thin-film filter 

designed to pass a narrow spectral band would be the combination of a 

grating and a slit (see Figure 13-10).  A grating monochromator (as 

described in Chapter 3) may be thought of as a tunable filter – rotating 

the grating tunes the central wavelength in the transmitted spectral band, 

and the exit slit serves to narrow this band. 

 

 

Figure 13-10.  Spectral resolution using a grating and a slit.  Polychromatic light incident 

on and diffracted by the grating G is not spectrally resolved; the grating merely diffracts 

each wavelength in the incident beam in a different direction.  A spectral narrow band  is 

obtained by using exit slit XS to prevent all wavelengths outside this band from passing to 

the detector.   

                                                             
187 J. U. White, “Gratings as broad band filters for the infra-red,” J. Opt. Soc. Am. 37, 713-
717 (1947). 

188 K. Knop, “Diffraction gratings for color filtering in the zero diffraction order,” Appl. 
Opt. 17, 3598-3603 (1978). 



 

199 

 

13.5.2. Gratings as biosensors189 

 Using surface plasmon resonance, surface relief diffraction gratings 

may be employed as optical biosensors to detect organic and biological 

molecules.190   These biosensors detect changes in surface plasma waves, 

also called surface plasmon polaritons, as molecules interact (adsorb or 

desorb) with the surface of a metal-coated grating, along which electrons 

may move freely.   

 A light wave incident on the grating surface may transfer some of its 

energy to a surface plasma wave; this transferred energy causes localized 

changes in the density of the free electrons.  For certain wavelengths, 

resonant oscillations of the free electrons are observed.  These 

oscillations are sensitive to changes in the refractive index of the medium 

above the metal, the basis for their use as sensors.  Both the intensity191 

and the wavelength192 of the resonance are sensitive to changes in the 

local refractive index at the surface of the metal; that is, the transfer of 

energy from the incident wave to the surface plasma wave results in a 

change in the grating’s diffracted efficiency (see Figure 9-20).   

 A typical grating-based biosensor uses a grating with a gold or silver 

coating, on which certain antibodies have been applied that bind only to 

specific macromolecules.  A fluid that may contain the specific 

macromolecule is applied to the metal grating surface; if the 

macromolecule is present, it will bind to the antibodies and change the 

refractive index of the region directly above the metal coating.   

                                                             
189 J. R. Sambles et al., “Optical excitation of surface plasmons: an Introduction,” 
Contemporary Physics 32, 173-183 (1991).  

190 Y. Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,” Phys. Rev. 
Lett. 19, 511-514 (1967); H. Raether, Surface Plasmons on Smooth and Rough Surfaces 
and on Gratings, Springer-Verlag (Berlin, Germany: 1988), chapter 6; B. Liedberg et al., 
“Surface plasmon resonance for gas detection and biosensing,” Lab. Sensors Actuat. 4, 
299-304 (1983); J. Homola et al., “Surface Plasmon Resonance Biosensors,” in F. Ligler 
and C. R. Taitt, Optical Biosensors: Present & Future, 1st ed., Elsevier Science (Amsterdam, 
Netherlands: 2002), chapter 4. 

191 D. C. Cullen et al., “Detection of immune-complex formation via surface plasmon 
resonance on gold-coated diffraction gratings,” Biosensors 3, 211-225 (1987). 

192 P. S. Vukusic et al., “Surface plasmon resonance on gratings as a novel means for gas 
sensing,” Sens. Actuators B 8, 155 (1992). 
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13.5.3. Gratings in fiber-optic telecommunications193 

 In the late 1990s, surface-relief diffraction gratings became widely 

used in two types of equipment for fiber-optic telecommunications 

networks operating in the 1.3–1.7 m wavelength range.  While other 

wavelength selective technologies exist (e.g., interference filters, fiber 

Bragg gratings and array waveguide gratings), the cost advantage of 

surface-relief gratings becomes significant as the channel count increases, 

since a system with N channels  requires N–1 filters but only a single 

grating – the filters must act in series (in a cascade arrangement) but the 

grating acts on all channels in parallel. Moreover, as N increases, the 

spectral bandpass of the filters must decreases, further increasing their 

cost. 

 Multiplexers & Demultiplexers.194  A multiplexer (see Figure 13-

11(a)) is a component in a fiber-optic network that combines many input 

channels into one output channel; as the input channels have different 

wavelengths, the multiplexer can be considered a spectrograph used in 

reverse.  A demultiplexer (Figure 13-11(b)) separates many wavelengths 

in a single input channel so that each is transmitted into a unique output 

channel (this is functionally equivalent to a spectrograph).  Multiplexers 

and demultiplexers may be employed together to produce add-drop 

routers. 

 

 

Figure 13-11.  Fiber-optic network components.  (a) Multiplexer: many input beams (each 

of a unique wavelength) are combined to propagate down the same output path.  (b) 

Demultiplexer: the several signals in the (combined) input beam are separated by 

wavelength.  For simplicity, only four wavelengths are shown. 

                                                             
193 E.g., see J.-P. Laude, DWDM Fundamentals, Components, and Applications, Artech 
House (Boston, Massachusetts: 2002). 

194 T. Kita and T. Harada, “Use of aberration-corrected concave gratings in optical 
demultiplexers,” Appl. Opt. 22, 819-825 (1983). 
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 Optical Spectrum Analyzers.  In addition to serving in network 

components, gratings are used in optical spectrum analyzers which use a 

small fraction of the light in the network to monitor the intensity and 

stability of each channel.  These systems are essentially spectrographs 

and may use plane or concave gratings. 

13.5.4 Gratings as beam splitters 

 Gratings can be used as beam splitters in conjunction with Moiré 

fringe applications or interferometers.  Under normal illumination ( = 

0), a grating with a symmetric groove profile will diffract both first-order 

beams with equal intensity.  A diffraction grating used as a beam divider 

provides higher efficiencies when its groove profile is rectangular, 

whereas a grating used for spectroscopic purposes should have a 

sinusoidal or triangular groove profile. 

 Transmission gratings can be used as two-beam splitters (where the 

zero-order beam has negligible efficiency or is otherwise trapped), three-

beam splitters (where the groove profile is chosen so that the zero-order 

beam has the same intensity as the two first-order beams), or for multiple 

beam sampling, depending on the choice of groove profile.195 

13.5.5 Gratings as optical couplers 

 Gratings can be used to couple light into and out of waveguide 

structures.196  Generally the groove spacing d is specifically chosen to 

ensure that only one diffraction order (other than the zero order) 

propagates. 

13.5.6 Gratings in metrological applications 

 Diffraction gratings can be employed in a variety of metrological 

applications.  The precise microscopic surface-relief pattern can be used 

                                                             
195 E. G. Loewen, L. B. Mashev and E. K. Popov, “Transmission gratings as 3-way beam 
splitters,” Proc. SPIE 815, 66-72 (1987);  E. K. Popov, E. G. Loewen and M. Nevière, 
"Transmission gratings for beam sampling and beam splitting," Appl. Opt. 35, 3072-3075 
(1996);  E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel 
Dekker, Inc. (1997), ch. 5. 

196 T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235-
254 (1977). 
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to calibrate atomic force microscopes (AFMs).  Gratings can also be used 

in systems designed to measure displacement197 and strain.198 

 

                                                             
197 J.-A. Kim, K.-C. Kim, E. W. Bae, S. Kim and Y. K. Kwak, “Six-degree-of-freedom 
displacement measurement using a diffraction grating,” Rev. Sci. Instrum. 71, 3214-3219 
(2000). 

198 B. Zhao and A. Asundi, ”Strain microscope with grating diffraction method,” Opt. Eng. 
38, 170-174 (1999). 
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14. ADVICE FOR USING GRATINGS      
14.1. CHOOSING A SPECIFIC GRATING 

 If a diffraction grating is to be used only to disperse light by 

wavelength (rather than provide focusing as well), then choosing the 

proper grating is often a straightforward matter involving the specifi-

cation of the blaze angle and groove spacing.  In other instances, the 

problem is one of deciding on the spectrometric system itself.  The main 

parameters that must be specified are 

 

• Spectral region (wavelength range) 

• Wavelength of peak efficiency 

• Speed (focal ratio) or throughput 

• Resolution or resolving power 

• Dispersion 

• Free spectral range 

• Output optics 

• Size limitations 

 

 The spectral region, spectral resolution and size requirements will 

usually lead to a choice of plane vs. concave design, as well as the coating 

(if the grating is reflecting).  The size and weight of the system, the 

method of receiving output data, the intensity, polarization and spectral 

distribution of the energy available, etc., must also be considered.  The 

nature of the detection system, especially for array detectors, plays a 

major role in system design: its size, resolution, and image field flatness 

are critical issues in the specification of the optical system, and the 

sensitivity (vs. wavelength) of the detector will lead to a grating efficiency 

vs. wavelength specification. 

 Spectral resolution depends on many aspects of the optical system 

and the quality of its components.  In some cases, the grating may be the 

limiting component (see Section 8.3).  The decision here involves the size 

of the grating and the angle at which it is to be used, but not on the 

number of grooves on the grating or the groove spacing (see Chapter 2). 

 Speed (or throughput) determines the focal length as well as the sizes 

of the optical elements and of the system itself.  Special coatings become 
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important in certain regions of the spectrum, especially the vacuum 

ultraviolet.   

 When thermal stability is important, gratings should be made on a 

low expansion material, such as Schott ZERODUR® or Corning ULE®. 

 Guidelines for specifying gratings are found in Chapter 16. 

14.2. APPEARANCE 

 In the early days of diffraction grating manufacture, R.W. Wood 

remarked that the best gratings were nearly always the worst ones in their 

cosmetic or visual appearance.  While no one would go so far today, it is 

important to realize that a grating with certain types of blemishes may 

well perform better than one that appears perfect to the eye.   

14.2.1. Ruled gratings   

 Cosmetic defects on ruled gratings may be caused by small droplets 

of metal or oxide that have raised the ruling diamond, or streaks may be 

caused by temporary adhesion of aluminum to the sides of the diamond 

tool.  On ruled concave gratings, one can usually detect by eye a series of 

concentric rings called a target pattern.  It is caused by minor changes in 

tool shape as the diamond swings through the arc required to rule on a 

curved surface.  Every effort is made to reduce the visibility of target pat-

terns to negligible proportions. 

 Some ruled master gratings have visible surface defects.  The most 

common sort of defect is a region of grooves that are burnished too lightly 

(in relation to the rest of the grating surface).  While readily seen with the 

eye, such a region has little effect on spectroscopic performance. 

14.2.2 Holographic gratings   

 Holographic gratings are susceptible to a different set of cosmetic 

defects.  Comets are caused by specks on the substrate; when the 

substrate is rotated as the photoresist is applied, these specks cause the 

photoresist to flow around them, leaving comet-like trails.  Artifacts 

created during the recording process are also defects; these are 

holograms of the optical components used in the recording of the grating.   
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14.3. GRATING MOUNTING 

 The basic rule of mounting a grating is that for any precise optical 

element: its shape should not be changed accidentally through excessive 

clamping pressure.  This problem can be circumvented by kinematic 

(three-point) cementing, using a nonrigid cement, or by supporting the 

surface opposite the point where clamping pressure is applied. 

 If a grating is to be mounted from the rear, the relative orientations 

of the front and rear surfaces is more important than if the grating is to 

be mounted from the front.  Front-mounting a plane grating, by 

contacting the mount to the front surface of the grating (near the edge of 

the grating and outside the free aperture), allows the cost of the substrate 

to be lower, since the relative parallelism of the front and back surfaces 

need not be so tightly controlled. 

14.4. GRATING SIZE 

 Grating size is usually dictated by the light throughput desired (and, 

in the case of concave gratings, imaging and instrument size limitations 

as well).  Should none of the standard substrate sizes listed in the MKS 

Diffraction Grating Catalog be suitable to match an instrument design, 

these same gratings can be supplied on special size substrates.  Special 

elongated substrate shapes are available for echelles and laser tuning 

gratings. 

14.5. SUBSTRATE MATERIAL 

 The standard material for small and medium-sized grating substrates 

is specially annealed borosilicate crown glass (BK-7).  Low-expansion 

material (such as Schott ZERODUR®, Corning ULE®, Ohara 

CLEARCERAM®-Z or fused silica) can be supplied upon request.  For 

large gratings (approximately 135 x 265 mm or larger), low-expansion 

material is standard; BK-7 can be requested as well.  For certain appli-

cations, it is possible to furnish metal substrates (e.g., copper or 

aluminum) that are good heat sinks. 

14.6. GRATING COATINGS 

 While evaporated aluminum is the standard coating for reflection 

gratings, fast-fired aluminum with overcoatings of magnesium fluoride 

(MgF2) can be used to enhance efficiency in the spectrum between 120 
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and 160 nm.  For the extreme ultraviolet (below 50 nm), gold replica 

gratings are recommended.  Gold replicas also have higher reflectivity in 

most regions of the infrared spectrum and are particularly useful for 

fiber-optic telecommunications applications in the S, C and L (infrared) 

transmission bands.* 

                                                             
* The transmission bands used in fiber-optic telecommunications are usually defined as 
follows: S (short) band: c. 1435 to 1535 nm, C (conventional) band: c. 1525 to 1565 nm, and 
L (long) band: c. 1565 to 1630 nm.  These definitions are by no means universal, but 
between them they cover the near-IR amplification range of erbium-doped optical fibers. 
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15. HANDLING GRATINGS     
 

 A diffraction grating is a first surface optic, so its surface cannot be 

touched or otherwise come in contact with another object without 

damaging it and perhaps affecting its performance.  Damage can take the 

form of contamination (as in the adherence of finger oils) or distortion of 

the microscopic groove profile in the region of contact.  This chapter 

describes the reasons why a grating must be handled carefully and 

provides guidelines for doing so.  

15.1. THE GRATING SURFACE 

 Commercially available diffraction gratings are replicated optics 

comprised of three layers: a substrate, a resin layer, and (usually) a 

reflective coating (see Chapter 5).  Each layer serves a different purpose: 

(1) the metallic layer provides high reflectivity, (2) the resin layer holds 

the groove pattern and groove profile, and (3) the substrate (usually 

glass) keeps the optical surface rigid. 

15.2. PROTECTIVE COATINGS 

 Since the groove profile is maintained by the resin (epoxy) layer, 

rather than the reflective (metallic) coating on top of it (see Figure 15-1), 

protective coatings such as those that meet the military specification 

MIL-M-13508 (regarding first-surface aluminum mirrors) do not serve 

their intended purpose.  Even if the aluminum coating itself were to be 

well-protected against contact damage, it is too thin to protect the softer 

resin layer underneath it.  Consequently, replicated gratings are not 

provided with contact- or abrasion-protecting coatings. 

15.3. GRATING COSMETICS AND PERFORMANCE 

 Warnings against touching the grating surface notwithstanding, 

damage to the surface occasionally occurs.  Contact from handling, 

mounting or packaging can leave permanent visible marks on the grating 

surface.  Moreover, some gratings have cosmetic defects that do not 

adversely impair optical performance, or perhaps represent the best 

available quality for a grating with a particular set of specifications.  For 

example, some gratings have 'worm tracks' due to mechanical ruling of 

the master grating from which the replicated grating was taken, others 
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have coating defects like spit or spatter, and others have 'pinholes' (tiny 

voids in the reflective coating), etc.  The many possible classifications of 

surface defects and the many opportunities to render the surface 

permanently damaged conspire to make the surfaces of many gratings 

look less than cosmetically perfect. 

 

 

Figure 15-1. Composition of a replica diffraction grating. A section of a standard blazed 

grating with an aluminum coating is shown.  Layer thicknesses are not shown to scale: 

generally, the aluminum film thickness is about 1 m, and the resin layer is between 10 and 

50 m, depending on groove depth and grating size; the substrate thickness is usually 

between 3 and 100 mm.  

 While this damage may be apparent upon looking that the grating, it 

is not straightforward to determine the effect this damage has on the 

performance of the grating.  Often the area affected by damage or 

contamination is a small fraction of the total area of the grating.  

Therefore, only a small portion of the total number of grooves under 

illumination may be damaged, displaced or contaminated.  A damaged or 

contaminated region on the surface of a grating may have little, if any, 

noticeable effect on the performance of the optical system, because a 

diffraction grating is usually used as an integrating optic (meaning that 

all light of a given wavelength diffracted from the grating surface is 

brought to focus in the spectral order of interest).  In contrast, a lens or 

mirror that does not focus (say, an eyeglass lens or a bathroom mirror) 

will show a distortion in its image corresponding to the damaged region 

of the optic.  This familiar experience – the annoying effect of a chip on 

an eyeglass lens or a smudge on a bathroom mirror – has led many to 

assume that a similar defect on the surface of a grating will lead to a 

similar deficiency in performance.  The most appropriate performance 

test of a grating with surface damage or cosmetic defects is not visual 
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inspection but instead to use the grating in its optical system and 

determine whether the entire system meets its specifications.  

 Damage to a region of grooves, or their displacement, will 

theoretically have some effect on the efficiency of the light diffracted from 

that region, as well as the total resolving power of the grating, but in 

practice such effects are generally not noticeable.  Of more concern, since 

it may be measurable, is the effect surface damage may have on light 

scattered from the grating, which may decrease the signal-to-noise (SNR) 

of the optical system.  Most forms of surface damage can be thought of as 

creating scattering centers where light that should be diffracted 

(according to the grating equation) is scattered into other directions 

instead.  

15.4. UNDOING DAMAGE TO THE GRATING SURFACE 

 Damage to the microscopic groove profile is, unfortunately, 

irreversible; the resin layer will retain a permanent imprint. 

Contamination of the grating surface with finger oils, moisture, vacuum 

pump oil, etc. is also often permanent, particularly if the contaminated 

grating surface has been irradiated.   

 Sometimes surface contamination can be partially removed, and 

occasionally it can be removed completely, using a mild unscented 

dishwashing liquid.  Care should be taken not to apply any pressure (even 

gentle scrubbing) to the grating surface. If contaminants remain, 

spectroscopic-grade solvents may be used; the purity of such solvents 

should be ascertained and only the purest form available used.  The use of 

carbon dioxide (CO2) snow,199 which sublimes after being applied to the 

grating surface, thereby carrying with it the contaminants, has also been 

used with some success.  The key to cleaning a grating surface is to 

provide no friction (e.g., scrubbing) that might damage the delicate 

groove structure. 

15.5. GUIDELINES FOR HANDLING GRATINGS  

• Never touch the grooved surface of a diffraction grating. Handle a 

grating by holding it by its edges.  If possible, use powder-free gloves 

while handling gratings.  

                                                             
199 R. R. Zito, “Cleaning large optics with CO2 snow,” Proc. SPIE 1236, 952-972 (1990). 
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• Never allow any mount or cover to come in contact with the 

grooved surface of a diffraction grating.  A grating that will be 

shipped should have its grooved surface protected with a specially-

designed cover that does not touch the surface itself.  Gratings that 

are not in use, either in the laboratory or on the manufacturing floor, 

should be kept in a closed box.  Keep any oils that may be used to 

lubricate grating mount adjustments away from the front surface of 

the grating.  

• Do not talk or breathe over the grooved surface of a diffraction 

grating.  Wear a nose and face mask when it is required that you talk 

over the surface of a grating.  Breath spray is particularly bad for 

reflection gratings, so one should not speak directly over the grating 

surface; instead, either turn away or cover the mouth (with the hand 

or a surgical mask).  
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16. GUIDELINES FOR SPECIFYING 

GRATINGS  
 

Proper technical specifications are needed to ensure that the part 

supplied by the manufacturer meets the requirements of the customer. 

This is especially true for diffraction gratings, whose complete 

performance features may not be fully recognized.  Documents that 

provide guidance in the specification of optical components, such as the 

ISO 10110 series ("Optics and optical instruments: Preparation of 

drawings for optical elements and systems"), do not clearly lend 

themselves to the specification of diffraction gratings.  This chapter 

provide guidelines for generating clear and complete technical 

specifications for gratings. 

 Specifications should meet the following criteria. 

• They should refer to measurable properties of the grating.  

• They should be as objective as possible (avoiding judgment or 

interpretation).  

• They should be quantitative where possible.  

• They should employ common units where applicable (the SI 

system is preferred).  

• They should contain tolerances.  

A properly written engineering print for a diffraction grating will be clear 

and understandable to both the customer and the manufacturer. 

16.1. REQUIRED SPECIFICATIONS 

 All grating prints should contain, at a minimum, the following 

specifications. 

1. Free Aperture. The free aperture, also called the clear aperture, of a 

grating is the maximum area of the surface that will be illuminated. 

The free aperture is assumed to be centered within the ruled area 

(see below) unless otherwise indicated.  For configurations in which 

the grating will rotate, such as in a monochromator, it is important to 

specify the free aperture as the maximum dimensions of the beam on 

the grating surface (i.e., when the grating is rotated most obliquely to 

the incident beam).  Also, it is important to ensure that the free 

aperture specifies an area that is completely circumscribed by the 
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ruled area, so that the illuminated area never includes part of the 

grating surface that does not have grooves.  The free aperture of the 

grating is that portion of the grating surface for which the optical 

specifications apply (e.g., Diffraction Efficiency, Wavefront Flatness 

or Curvature, Scattered Light – see below). 

2. Ruled Area.  The ruled area of a grating is the maximum area of the 

surface that will be covered by the groove pattern. The ruled area is 

assumed to be centered on the substrate face unless otherwise 

indicated.  By convention, the ruled area of a rectangular grating is 

specified as "groove length by ruled width" – that is, the grooves are 

parallel to the first dimension; for example, a ruled area of 30 mm x 

50 mm indicates that the grooves are 30 mm long.  Most rectangular 

gratings have their grooves parallel to the shorter substrate 

dimension. For gratings whose grooves are parallel to the longer 

dimension, it is helpful to specify "long lines" to ensure that the 

grooves are made parallel to the longer dimension. 

3. Substrate Dimensions.  The substrate dimensions (width, length, and 

thickness) should be called out, as should their tolerances.  If the 

grating is designed to be front-mounted, the substrate specifications 

can be somewhat looser than if the grating surface will be positioned 

or oriented by the precise placement of the substrate.  Front-

mounting a grating generally reduces its cost and production time 

(see Alignment below).  A grating substrate should have bevels on its 

active face, so that it is easier to produce and to reduce chipping the 

edges while in use.  Bevel dimensions should be specified explicitly 

and should be considered in matching the Ruled Area (above) with 

the substrate dimensions.* For custom (special-size) substrates, 

certain minimum bevel dimensions may be required to ensure that 

the grating is manufacturable – please contact us for advice. 

4. Substrate Material. The particular substrate material should be 

specified.  If the material choice is of little consequence, this can be 

left to the manufacturer, but especially for applications requiring 

substrates with low thermal expansion coefficients, or requiring 

gratings that can withstand high heat loads, the substrate material 

and its grade should be identified.  For transmission gratings, the 

proper specification of the substrate material should include 

reference to the fact that the substrate will be used in transmission, 

                                                             
* MKS standard bevels have a face width of 1.5 mm and are oriented at 45° to the two edges. 
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and may additionally refer to specifications for refractive index, 

inclusions, bubbles, striae, etc.  

5. Nominal Surface Figure.  Plane (flat) gratings should be specified as 

being planar; concave gratings should have a radius specified, and 

the tolerance in the radius should be indicated in either millimeters 

or fringes of red HeNe light ( = 632.8 nm) (a "wave" being a single 

wavelength, equaling 632.8 nm, and a "fringe" being a single half-

wavelength, equaling 316.4 nm).  Deviations from the nominal 

surface figure are specified separately as "wavefront flatness" or 

"wavefront curvature" (see below). 

6. Wavefront Flatness or Curvature.  This specification refers to the 

allowable deviation of the optical surface from its Nominal Surface 

Figure (see above).  Plane gratings should ideally diffract plane 

wavefronts when illuminated by collimated incident light. Concave 

gratings should ideally diffract spherical wavefronts that converge 

toward wavelength-specific foci.  In both cases, the ideal radius of the 

diffracted wavefront should be specified (it is infinite for a plane 

grating) and maximum deviations from the ideal radius should also 

be called out (e.g., the tolerance in the radius, higher-power 

irregularity in the wavefront).  It is important to specify that grating 

wavefront testing be done in the diffraction order of use if possible, 

not in zero order, since the latter technique does not measure the 

effect of the groove pattern on the diffracted wavefronts.  Deviations 

from a perfect wavefront are most often specified in terms of waves 

or fringes of red HeNe light.  Generally, wavefront is specified as an 

allowable deviation from the nominal focus ("power") and allowable 

higher-order curvature ("irregularity"). 

7. Groove Spacing or Frequency.  The number of grooves per 

millimeter, or the spacing between adjacent grooves, should be 

specified, but not both (unless one is subjugated to the other by 

labeling it as "reference").  For a grating whose groove spacing varies 

across the surface (e.g., an aberration-corrected concave holographic 

grating), the groove spacing (or frequency) is generally specified at 

the center of the grating surface. 

8. Groove Alignment.  Alignment refers to the angle between the groove 

direction and an edge of the grating substrate.  Sometimes this 

angular tolerance is specified as a linear tolerance by stating the 

maximum displacement of one end of a groove (to an edge) relative 

to the other end of the groove.  Generally, a tight alignment 
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specification increases manufacturing cost; it is often recommended 

that alignment be allowed to be somewhat loose and that the grating 

substrate dimensions not be considered for precise alignment but 

that the grating surface be oriented and positioned optically instead 

of mechanically (see comments in Substrate Dimensions above). 

9. Diffraction Efficiency.  Grating efficiency is usually specified as a 

maximum at a particular wavelength; often this is the peak 

wavelength (i.e., the wavelength of maximum efficiency).  

Occasionally efficiency specifications at more than one wavelength 

are specified.  Either relative or absolute diffraction efficiency should 

be specified. 

• Relative efficiency is specified as the percentage of the power at a 

given wavelength that would be reflected by a mirror (of the same 

coating as the grating) that is diffracted into a particular order by 

the grating (that is, efficiency relative to a mirror).   

• Absolute efficiency is specified as the percentage of the power 

incident on the grating that is diffracted into a particular order by 

the grating. 

 In addition to the wavelength and the diffraction order, grating 

efficiency depends on the incidence and diffraction angles  and ; if 

these angles are not explicitly stated, the standard configuration 

(namely the Littrow configuration, in which the incident and 

diffracted beams are coincident) will generally be assumed.  Unless 

otherwise noted on the curves themselves, all MKS efficiency curves 

are generated for the near-Littrow conditions of use with . 

 Generally, diffraction gratings are polarizing elements, so that 

the efficiency in both polarizations should be considered: 
 

 P-plane TE light polarized parallel to grooves 

  S-plane TM light polarized perpendicular to grooves 
 

For each wavelength that has an efficiency specification, the following 

should be indicated: the wavelength, the efficiency (in percent), 

whether the efficiency specification is relative or absolute, the 

diffraction order, the polarization of the light, and the angles  and .  

In some cases, the bandwidth of the exit slit in the spectrometer used 

to measure the grating efficiency may need to be called out as well. 
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16.2. SUPPLEMENTAL SPECIFICATIONS 

 Additional specifications are sometimes required based on the 

application in which the grating is to be used. 

10. Blaze Angle.  Although it is better to specify diffraction efficiency, 

which is a performance characteristic of the grating, sometimes the 

blaze angle is specified instead (or additionally).  A blaze angle 

should be specified only if it is to be measured and verified (often 

done by measuring efficiency anyway), and a tolerance should be 

noted. In cases where both the diffraction efficiency and the blaze 

angle are specified, the efficiency specification should be controlling, 

and the blaze angle specification should be for reference only. 

11. Coating Material.  Generally, the Diffraction Efficiency 

specifications will dictate the coating material, but sometimes a 

choice exists and a particular coating should be specified.  

Additionally, dielectric coatings may be called out that are not 

implied by the efficiency specifications.   

12. Scattered Light.  Grating scattered light is usually specified by 

requiring that the fraction of monochromatic light power incident on 

the grating and measured a particular angle away from the diffracted 

order falls below a certain upper limit.  The proper specification of 

scattered light would call out the test configuration, the polarization 

and wavelength of the incident light, the incidence angle, the solid 

angle subtended by the detector aperture, and the dimensions of the 

exit slit.  Grating scatter is measured at MKS using red HeNe light. 

13. Cosmetics.  The cosmetic appearance of a diffraction grating does not 

correlate strongly with the performance of the grating, and for this 

reason specifications limiting the type, number and size of cosmetic 

defects are not recommended.  Nevertheless, all MKS products 

undergo a rigorous cosmetic inspection before shipment. 

14. Imaging Characteristics.  Concave holographic gratings may be 

aberration-corrected, in which case they can provide focusing 

without the use of auxiliary optics.  In these cases, imaging 

characteristics should be specified, generally by calling out the full 

width at half maximum intensity (FWHM) of the images. 

15. Damage Threshold.  In some instances, such as pulsed laser 

applications, diffracted gratings are subjected to beams of high power 

density that may cause damage to the delicate grating surface, in 
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which case the maximum power per unit area that the grating surface 

must withstand should be specified. 

16. Other specifications. Other specifications that relate to the functional 

performance of the grating should be called out in the print.  For 

example, if the grating must perform in extreme environments (e.g., 

a satellite or space-borne rocket, high heat and/or humidity 

environments), this should be noted in the specifications. 

16.3. ADDITIONAL REQUIRED SPECIFICATIONS FOR 

CONCAVE ABERRATION-REDUCED GRATINGS 

 Concave aberration-reduced gratings, often used in constant-

deviation and flat-field spectrograph mounts (see Sections 7.5.3 and 

7.5.5), have imaging properties that are tailored to the specific geometry 

of the spectrometer; that is, the grating recording coordinates , rC,  and 

rD depend on the use coordinates , r,  and r (all of these quantities are 

defined in Chapter 7).  Consequently, a concave aberration-reduced 

grating requires additional specifications to be fully described. 

 The cases for constant-deviation monochromators and flat-field 

spectrographs are given separately below.  In all cases, a clear optical 

schematic showing the quantities defined is highly recommended, 

especially to ensure that the definition of angles is understood. 

17. Constant-deviation monochromator gratings. Concave holographic 

gratings used in constant deviation monochromators should have the 

following three parameters specified (see Figure 16-1) to be defined 

uniquely: 

• the distance r from the entrance slit to the grating center (often 

called the entrance arm distance), 

• the distance r from the exit slit to the grating center (the exit 

arm distance), and 

• the angle 2K between these two arms (the deviation angle); 

alternatively, the half-deviation angle K may be specified 

provided it is clear which angle is called out. 

18. Flat-field spectrograph gratings. Concave holographic gratings used 

in flat-field spectrographs require four parameters (see Figure 16-2): 

• the entrance arm distance r, 

• the angle  the entrance arm makes with the grating normal, 
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Figure 16-1.  Constant-deviation monochromator geometry.   The quantities that should 

be specified are the entrance arm distance r, the exit arm distance r, and the angle 2K 

between these arms. 

 

 

Figure 16-2.  Flat-field spectrograph geometry.   The quantities that should be specified 

are the incidence angle , the entrance arm distance r, the exit arm distance rS for the 

shortest wavelength in the spectrum to reach the detector, and the obliquity angle of the 

detector.  The detector is shown; the shortest and longest wavelengths S and L image at 

either end of the detector.  [The distance rL from the grating center to the image of L is not 

shown.] 
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• the distance rS from the grating center to the image (on the 

detector) of the shortest wavelength S in the spectrum, and 

• the obliquity angle  of the detector (as described in 2.3.2). 

 An alternative set of parameters for defining a flat-field spectrograph 

is the set of quantities , r, lH and H, where and r are as above and 

• the distance lH is measured from the grating center to the line 

defined by the detector, such that these two lines are 

perpendicular, and 

• the angle H is the angle the line lH makes with the grating 

normal (see Figure 16-3).   

  

 

Figure 16-3.  Alternative flat-field spectrograph geometry.   A flat-field spectrograph can 

also be described uniquely by the following quantities: the incidence angle , the entrance 

arm distance r, the distance lH (the line from the grating center to the line defined by the 

detector, such that these two lines are perpendicular), and the angle H that the line lH 

makes with the grating normal.   

Converting from the parameter set in Figure 16-3 to that in Figure 16-2 

can be accomplished using the formulas 

  rS = lH sec(H – S),    rL = lH sec(H – L). (16-1) 
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APPENDIX A.  Sources of Error in 

Monochromator-Mode Efficiency 

Measurements of Plane Diffraction 

Gratings  
 

Jeffrey L. Olson 

 

 While simple in principle, measuring the efficiency of diffraction 

gratings is a complex process requiring precise methods to achieve 

acceptable results.  Every optical, mechanical, and electronic component 

comprising an efficiency measuring system is a potential source of error.  

Environmental factors may also contribute to the overall measurement 

uncertainty.  Each source of error is identified and its effect on efficiency 

measurement is discussed in detail.   

A.0. INTRODUCTION 

 In his 1982 book Diffraction Gratings, M.C. Hutley makes the 

following statement regarding the measurement of diffraction grating 

efficiency: 
 

“One seldom requires a very high degree of photometric accuracy in 

these measurements as one is usually content to know that a grating 

is 60% efficient rather than 50% and the distinction between, say, 

61% and 60% is of little practical significance.”200 
      

 While this statement may have been true at the time it was written, it 

is no longer the case today. Certain industries, such as laser tuning and 

telecommunications, demand gratings with efficiencies approaching 

theoretical limits.  The efficiency specifications for these gratings are well 

defined, and measurement errors as small as one percent may mean the 

difference between the acceptance and rejection of a particular grating.       

   In principle, measuring the efficiency of diffraction gratings is simple.  

A ratiometric approach is used in which the energy of a diffracted beam is 

compared to the energy of the incident beam.  The incident beam may be 

                                                             
200 M. C. Hutley, Diffraction Gratings, Academic Press (1982), p.168. 
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either measured directly (absolute measurement) or indirectly (relative 

measurement, by reflection from a reference mirror).  Conversion from 

relative to absolute efficiency can be made easily by multiplying the 

known reflectance of the reference mirror by the relative efficiency of the 

grating.  (Exceptions to this rule have been noted, namely 1800 to 2400 

g/mm gold or copper gratings measured at wavelengths below 600 

nm).201     

 As mentioned in Section 11.2, a monochromator mode efficiency-

measuring instrument, in essence, is a double grating monochromator, 

with the grating under test serving as the dispersing element in the 

second monochromator.  The first monochromator scans through the 

spectral range while the test grating rotates in order to keep the diffracted 

beam incident upon a detector that remains in a fixed position 

throughout the measurement. 

 A typical efficiency measuring apparatus (see Figure A-1) consists of a 

monochromator, collimator, polarizer, grating rotation stage, grating 

mount,  

detector positioning stage, detector and associated optics, amplifier, and 

signal processing hardware.  Once the beam exits the monochromator it 

is collimated, polarized, and, if necessary, stopped-down to a diameter 

appropriate for the grating being tested.  The beam is then directed 

toward the grating to be tested where it is diffracted toward the detector.  

The electronic signal generated by the detector is amplified, filtered, and 

presented to the user via any number of devices ranging from a simple 

analog meter to a computer.  In any case, a comparison is made between 

a reference signal, obtained by direct or indirect measurement of the 

incident beam, and the signal from the grating being tested. 

 Efficiency measurement results are normally reported on a graph 

(see Figure A-2) with wavelength on the X-axis and percent efficiency 

(absolute or relative) on the Y-axis.  It is very unusual to see a published 

efficiency curve with error bars or some other indication of the 

measurement uncertainty.  It must be understood that these 

measurements are not exact and may be in error by several percent.  A 

complete understanding of the measurement process as well as the 

sources of error and how to minimize them would be of great value to the 

technician or engineer making the measurements as well as those 

                                                             
201 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. 

(1997), p. 415. 
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involved in making decisions to accept or reject gratings based on 

efficiency.   

 

 

Figure A-1.  Typical monochromator-mode efficiency measuring apparatus.    

A.1. OPTICAL SOURCES OF ERROR 

A.1.1. Wavelength error 

 Perhaps the most obvious error of an optical nature is an error in 

wavelength.  If the monochromator does not accurately select the desired 

wavelength, efficiency peaks, anomalies, etc., will appear at the wrong 

spectral position on the efficiency curve.  If the grating being measured is 

rotated to the appropriate incident angle for a given wavelength, the 

diffracted beam may partially or totally miss the detector if the 

wavelength is not correct.  This is less of a problem in manually 

controlled instruments, since the operator can adjust the wavelength or 

grating rotation angle to obtain a maximum reading.  On an automated 

instrument, however, a significant error may result unless the instrument 

has the ability to “hunt” for the efficiency peak.   

 Wavelength errors are usually caused by a failure of the 

monochromator indexing mechanism to move the grating to the correct 

rotation angle.  Most computer-based monochromator systems employ 

Rotation stage 
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correction factors or calibration tables in firmware to correct systematic 

wavelength errors.  Even so, many monochromators use open-loop 

stepper motor drives to position the grating.  Since there is no explicit 

feedback from the rotation mechanism, the controller must assume that 

the grating is in the correct position.  If the motor fails to move the proper 

number of steps due to binding in the mechanical system or for some 

other reason, the wavelength will be in error.   

 

 

Figure A-2.  Typical efficiency curve.    

 To ensure wavelength accuracy, periodic wavelength calibration 

should be done using a calibration lamp or other spectral line source.  

The author has used the Schumann-Runge O2 absorption lines effectively 

for monochromator wavelength calibration in the far ultraviolet region 

near 193 nm.  The well-defined Schumann-Runge transitions occurring at 

192.6 nm are especially useful spectral features.202 

                                                             
202 R. C. Sze and C. A. Smith, “High-temperature absorption studies of the Schumann-
Runge band of oxygen at ArF laser wavelengths,” J. Opt. Soc. Am. B7, 3, 462-475 (2000). 



 

223 

 

A.1.2. Fluctuation of the light source intensity 

 One of the drawbacks of using a single detector system is that the 

light source intensity can change between the times the reference and 

sample measurements are made.  With filament lamps, the intensity is 

proportional to the power dissipated in the filament.  According to Ohm’s 

law, power P is the product of current I and voltage E, and voltage is the 

product of current and resistance R, therefore:   

  P = IE = I (IR) = I2R. (A-1) 

 Typically, electrical power is applied to the lamp socket, rather than 

to the lamp directly.  The contact resistance between the lamp and socket 

can be significant and is prone to change over time.  If a constant voltage 

is applied to the socket and the contact resistance was to increase, the 

current, power, and lamp intensity will decrease as a result.  If a constant 

current is applied instead, no change in power will occur as the result of a 

change in contact resistance (provided the filament resistance remains 

constant).  For this reason, current-regulated, rather than voltage-

regulated, power supplies are preferred whenever filament-type lamps 

are used.  A photo-feedback system, in which a detector monitors and 

controls the lamp intensity, is also a good choice.  Regardless of the type 

of light source used, it is always best that the sample and reference 

measurements be made in quick succession.      

A.1.3. Bandpass 

 As a rule, the bandpass of the light source should always be narrower 

than that of the grating under test.  The bandpass B of the grating under 

test is estimated by the angular dispersion D of the grating, the distance r 

from the grating to the detector aperture, and the width w of the exit 

aperture according to the equation: 

  
rD

w
B


 . (A-2) 

 [Eq. (A-2) assumed the case where the aberrated image of the entrance 

slit is not wider than the exit aperture; see Section 8.3).]  

 Whenever a grating is measured using a source with a bandpass that 

is too broad, some of the outlying wavelengths will be diffracted away 

from the detector.  In contrast, when the reference measurement is made 

using a mirror or by direct measurement of the incident beam, no 

dispersion occurs.  Consequently, the detector captures all wavelengths 
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contained within the incident beam during the reference measurement, 

but not during the grating measurement (resulting in an artificial 

decrease in grating efficiency).  Another consequence of measuring 

gratings using a light source with a broad bandpass is that sharp 

efficiency peaks will appear flattened and broadened, and may be several 

percent lower than if measured using a spectrally-narrow light source.  

Efficiency curves should, but often do not, state the bandpass of the 

source used to make the measurement.  When using a monochromator, it 

is generally best to adjust the slits to obtain the narrowest bandpass that 

will provide an acceptable signal-to-noise ratio (SNR).  Alternatively, a 

narrow band spectral source, such as a laser or calibration lamp, may be 

used in conjunction with a monochromator or interference filter to 

eliminate unwanted wavelengths. 

A.1.4. Superposition of diffracted orders 

 According to the grating equation (see Eq. (2-1)), the first order at 

wavelength and the second order at wavelength /2 will diffract at the 

same angle (see Section 2.2.2).  Therefore, the light emerging from a 

monochromator exit slit will contain wavelengths other than those 

desired.  The unwanted orders must be removed to accurately determine 

the efficiency at the desired wavelength.  “Order-sorting” filters are most 

commonly used for this purpose.  These are essentially high-pass optical 

filters that transmit longer wavelengths while blocking the shorter 

wavelengths.   

 Another problematic situation arises when the adjacent diffracted 

orders are very closely spaced.  In this case, adjacent orders must be 

prevented from overlapping at the detector aperture, which would result 

in a significant error.  This situation can be avoided by ensuring that the 

bandpass of the source is less than the free spectral range of the grating 

being tested.   As shown in Section 2.7, the free spectral range F is 

defined as the range of wavelengths  in a given spectral order m that 

are not overlapped by an adjacent order, expressed by Eq. (2-29): 

  F =    = 
m


. (2-29) 

For an echelle being measured in the m = 100th order at = 250 nm, the 

free spectral range is 2.5 nm. The detector aperture must also be 

sufficiently narrow to prevent adjacent orders from being detected, but 
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not so narrow as to violate the “rule” regarding the bandpass of the light 

source and grating under test.   

A.1.5. Degradation of the reference mirror 

 When a mirror is used to determine the incident light energy, its 

reflectance as a function of wavelength needs to be well characterized.  

Mirrors tend to degrade over time due to atmospheric exposure, and if 

not re-characterized periodically, optimistic measurements of grating 

efficiency will result.  At the National Physical Laboratory (NPL) in 

England, an aluminum-coated silica flat was used as a reference mirror.  

This is nothing new, but in this case the “buried” surface of the mirror 

was used as the mirror surface instead of the metal surface itself.  Since 

the aluminum is never exposed to the atmosphere, its reflectance is 

stable, and since the mirror was characterized through the silica 

substrate, its influence is automatically taken into account.203   The 

restriction in using the buried surface method is that the incident beam 

must be normal to the mirror surface to avoid beam separation caused by 

multiple reflections from the front and buried surfaces.  When an 

unprotected mirror surface is used as a reference, absolute 

measurements of its reflectance should be made on a regular basis. 

A.1.6. Collimation 

 If the incident beam is not reasonably well collimated, the rays will 

fall upon the grating at a variety of angles and will be diffracted at 

different angles.  In the case of a diverging diffracted beam, the beam will 

spread, possibly overfilling the detector.  Since the reference beam does 

not encounter a dispersing element in its path (but the sample beam 

does), it is possible that all the energy will be collected during the 

reference measurement but not during the sample measurement, causing 

the measured efficiency to be low.  

 Whenever a monochromator-based light source is used it is difficult, 

if not impossible, to perfectly collimate the beam emerging from the exit 

slit in both planes.  It is important to collimate the beam in the direction 

perpendicular to the grooves, but it is not as critical for the beam to be 

well collimated in the direction parallel to the grooves, since no 

diffraction occurs in that direction.  A limiting aperture may be used to 

restrict the beam size and prevent overfilling the grating under test. 

                                                             
203 M. C. Hutley, Diffraction Gratings, Academic Press (1982), p.169. 
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 It should be emphasized that beam collimation is not nearly as 

important in an efficiency measuring system as it is in an imaging system, 

such as a spectrograph.  It is only necessary to ensure that the detector 

collects all the diffracted light.  The degree of collimation required largely 

depends on the dispersion of the grating under test, but in most cases a 

beam collimated to within 0.1o is adequate.  For example, an angular 

spread of 0.1o in a beam incident upon a 1200 g/mm grating measured in 

the 1st order at 632.8 nm (Littrow configuration) will produce a 

corresponding spread in the diffracted beam of less than 1 mm over a 

distance of 500 mm.   

A.1.7. Stray light or “optical noise” 

 The influence of stray radiation must always be taken into 

consideration when making efficiency measurements.  If the level of 

background radiation is very high, the detector may be biased enough to 

result in a significant error.  This is especially true when simple DC 

detection methods are used.  Any bias introduced by background 

radiation must be subtracted from both the reference and sample 

measurements before the ratio is computed.  For example, if the 

background radiation equals 2% of the reference beam, and the grating 

being tested measures 50% relative efficiency, the actual efficiency is 

48/98 or 49%.  This represents an error of 1% of the full-scale measured 

efficiency.  In many cases simply operating the instrument in a dark lab 

or enclosure is sufficient to reduce background light to insignificant 

levels.  Averaging is often used to “smooth out” noisy signals, but unlike 

other more random noise sources that tend to be bipolar, stray light-

induced noise is always positive.  Averaging several measurements 

containing a significant level of optical noise may bias the final 

measurement.  In most cases, it is best to use phase-sensitive detection to 

remove the effects of unwanted radiation. 

A.1.8. Polarization 

 Most efficiency curves display the S and P as well as the 45-degree 

polarization efficiency vs. wavelength.  When making polarized efficiency 

measurements using an unpolarized source, it is necessary to use some 

form of optical element to separate the two polarization vectors.  It is 

critical that the polarizer be aligned as closely as possible to be parallel (P 

plane) or perpendicular (S plane) to the grooves or a polarization mixing 

error will result.  To determine the 45-degree polarization efficiency of a 
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grating, it seems easy enough to set the polarizer to 45 degrees and make 

the measurement, but unless the output from the light source is exactly 

balanced in both S and P planes, an error will result.   

Figure A-3 shows the effect of source polarization on the measured 

efficiency of a hypothetical grating having efficiencies of 90% in the P 

plane and 50% in the S plane at some arbitrary wavelength.  In one case 

the light source contains equal S and P intensities while the other has a 

70:30 S-to-P ratio.  In the case of the balanced light source, as the 

polarizer is rotated to 45o, the efficiency is 70%, exactly the average of the 

S and P measurements.  On the other hand, the unbalanced source 

results in a measured efficiency of 60%.  This represents an error of 10% 

of the full-scale measured value.  For that reason, it is always 

recommended to make separate S and P measurements and then average 

them to determine the grating’s 45-degree polarization efficiency. 
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Figure A-3.  Efficiency comparison with balanced and unbalanced source polarization 

(0º = P, 90º = S).    

A.1.9. Unequal path length 

 An error can result in a single detector system purely as the result of 

the optical path being different between the reference and sample 

measurements.  This is especially true at UV wavelengths where the 

atmospheric absorption is significant.  Different optical path lengths are 
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not as much of a problem in dual detector systems since the relative 

calibration of the two detectors can compensate for atmospheric effects.   

A.2. MECHANICAL SOURCES OF ERROR 

A.2.1. Alignment of incident beam to grating rotation axis 

 It is critical to align the incident beam to the rotation axis of the 

grating stage and mount.  If not, the beam will “walk” across the grating 

surface at relatively low incident angles, and partially miss the grating 

surface at very high incident angles.  Since the incident and diffracted 

beams are displaced from their correct location, it is entirely possible that 

all or part of the diffracted beam will miss the detector aperture. 

A.2.2. Alignment of grating surface to grating rotation axis 

 The effect of not having the grating surface located exactly over the 

rotation axis will be similar to that of not having the beam aligned to the 

grating rotation axis.  Optimally, a grating mount that references the 

grating’s front surface, rather than the sides or back of the grating 

substrate, may be used to ensure alignment.  This is often not practical 

since the contact points on the mount may leave an impression on the 

grating surface.   To avoid this problem, an inclined lip or rail is 

sometimes used that makes contact with the grating on the extreme outer 

edge only.  On beveled grating substrates this can be a source of error 

since the dimensional variation of the bevels can be significant.  If the 

grating mount does not reference the front surface, an adjustment must 

be provided in order to accommodate gratings of various thicknesses.   

A.2.3. Orientation of the grating grooves (tilt adjustment) 

 On grating mounts that use the substrate to locate the grating to be 

tested, the plane in which the diffracted orders lie will be tilted if the 

grooves are not properly aligned with the sides of the grating substrate. 

This may cause the diffracted beam to pass above or below the detector 

aperture. Most gratings do not have perfect alignment of the grooves to 

the substrate, so it is necessary to incorporate a method for rotating the 

grating a small amount in order to compensate for groove misalignment.   
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A.2.4. Orientation of the grating surface (tip adjustment) 

 Due to some wedge in the grating substrate, for example, the grating 

surface may not be parallel to the grating rotation axis.   This will cause 

the diffracted beam to fall above or below the detector aperture.  On most 

grating mounts an adjustment is provided to correct this situation.  

Ideally the grating tip, tilt, and rotation axes all intersect at a common 

point on the grating surface, but in fact it is extremely rare to find a 

grating mount in which the tip axis does so.  In most cases the tip axis is 

located behind or below the grating substrate, so when adjusted, the 

grating surface will no longer lie on the rotation axis.  The ideal situation 

is one in which the grating is front-surface referenced on the mount so 

that no adjustment is needed. 

A.2.5. Grating movement 

 It is essential that the grating being tested be held securely in the 

mount during the testing process.  Vibration from motors and stages as 

well as the inertia generated by the grating as it is rotated may cause it to 

slip.  Any motion of the grating relative to the mount will result in 

alignment errors and invalidate any measurements taken after the 

movement occurred.      

A.3. ELECTRICAL SOURCES OF ERROR 

A.3.1. Detector linearity 

 In principle, all that is required to make satisfactory ratiometric 

measurements is a linear response from the sensing element and 

associated electronics.  Nearly all detectors have response curves that 

exhibit non-linearity near saturation and cut off.  It is extremely 

important to ensure that the detector is biased such that it is operating 

within the linear region of its response curve.  In addition, the detector 

preamplifier and signal processing electronics must also have a linear 

response, or at least have the non-linearity well characterized for a 

correction to be applied.  Neutral density filters may be inserted into the 

optical path to verify or characterize the detection system linearity.   The 

following set of five calibrated neutral density filters is sufficient, in most 

cases, for verifying the detector response to within  1%: 

 Detector non-linearity becomes a major source of error when the 

reference and grating signals differ significantly in intensity.  Unless the 
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linearity of the detector and associated electronics has been well 

established, using a mirror with a reflectance of 90% or higher as a 

reference may introduce an error if the grating being measured has an 

efficiency of 20%.  This is analogous to sighting in a rifle at 100 yards and 

using it to shoot at targets 25 yards away.   In some situations, it is best to 

use a well-characterized grating as nearly identical to the grating to be 

tested as possible.  This method is especially useful for making “go/no-

go” efficiency measurements.  If the reference grating is carefully chosen 

to be one that is marginally acceptable, then the efficiency measuring 

instrument will have its greatest accuracy at the most critical point.  All 

gratings measuring greater than or equal to 100% relative to the 

reference grating are assumed to be good and those below 100% are 

rejected.  Of course, this method requires periodic recharacterization of 

the reference grating to maintain measurement integrity.       

 

Optical 

Density 
Transmission* 

0.1 79% 

0.3 50% 

0.6 25% 

1.0 10% 

2.0 1% 

* rounded to nearest whole percent. 

A.3.2. Changes in detector sensitivity  

 Some efficiency measuring instruments use separate detectors for 

making the reference and grating measurements (these are not to be 

confused with systems that use secondary detectors to monitor light 

source fluctuations).  Most, however, use a single detector for both the 

reference and grating measurements instead.  There are very good 

reasons for doing this.  First, detectors and the associated electronics are 

expensive, so using a single detector is far more cost effective.  Detector 

response characteristics change over time, so frequent calibration is 

necessary in a dual-detector system to ensure that the photometric 

accuracy of each detector has not changed relative to the other.  By using 

the same detector for sample and reference measurements, photometric 

accuracy is not an issue, since an error in the reference measurement will 

also be present in the grating measurement and consequently nullified.        
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A.3.3. Sensitivity variation across detector surface  

 A significant error can result if the reference or diffracted beam is 

focused down to form a spot that is much smaller than the detector’s 

active area.  Some detectors, especially photomultipliers, may exhibit a 

sensitivity variation amounting to several percent as the spot moves 

across the detector surface.  It is often sufficient to place the detector 

aperture far enough away from the detector such that the spot is 

defocused and just under-fills the active area.  Alternately a diffuser or 

integrating sphere is sometimes used to distribute the light more 

uniformly across the detector surface.      

A.3.4. Electronic noise  

 Any form of optical or electronic noise can influence efficiency 

measurements.  It is desirable to maintain the highest signal-to-noise 

ratio (SNR) possible, but often a trade-off must be made between signal 

strength and spectral resolution.  Decreasing the monochromator slit 

width in order to narrow the bandpass of the source results in a reduced 

detector output signal.  Care must be taken not to limit the intensity to a 

point where electronic (and optical) noise becomes a significant factor.  

In most cases, an SNR value of 200:1 is adequate. 

A.4. ENVIRONMENTAL FACTORS 

A.4.1. Temperature 

 Normally it is not necessary to perform efficiency measurements in 

an extremely well-regulated environment, but there are a few cases in 

which temperature control is needed.  Whenever very high spectral 

resolution measurements are made (c.   1 nm), temperature variation 

within the monochromator may cause a significant wavelength drift.  

Temperature fluctuations may cause optical mounts to expand or 

contract resulting in a displacement of the beam.  It is always a good idea 

to keep heat sources well away from all optical and mechanical 

components that may affect the grating being tested or the beam.  It is 

also wise to allow gratings that are to be tested to acclimate in the same 

environment as the test instrument.       



 

232 

 

A.4.2. Humidity 

 Humidity is not usually a significant error source, but since it can 

affect the system optics and electronics, it merits mentioning.  A high 

humidity level may influence measurements at wavelengths where 

atmospheric absorption varies with relative humidity.  Low humidity 

promotes the generation of static electricity that may threaten sensitive 

electronic components.  In general, the humidity level should be 

maintained in a range suitable for optical testing.   

A.4.3. Vibration 

 Vibration becomes an error source when its amplitude is sufficient to 

cause the grating under test or any of the optical components to become 

displaced.  If the vibration is from a source other than the instrument 

itself, then mounting the instrument on a vibration isolated optical bench 

will solve the problem.  If the instrument itself is the vibration source, 

then the problem becomes a little more difficult.  Stepper-motors are 

most often used to rotate and translate the grating being tested, as well as 

tune the monochromator, select filters, etc.  As the motors ramp up to 

predetermined velocity, a resonant frequency is often encountered that 

will set up an oscillation with one or more mechanical components in the 

system.  While it is sometimes necessary to pass through these resonant 

frequencies, it is never advisable to operate continuously at those 

frequencies.  Most motion controllers have provisions for tuning the 

motion profile to minimize resonance. Some motion controllers allow 

micro-stepped operation of the motors, producing a much smoother 

motion.  Although they are generally more expensive, servo controllers, 

amplifiers, and motors provide exceptional accuracy and very smooth 

motion. 

A.5. SUMMARY 

 Many of the error sources identified can be eliminated entirely, but 

only at the expense of decreased functionality.  Greater accuracy can be 

obtained using an instrument that operates at a fixed wavelength in a 

fixed geometry and is only used to test gratings that have identical 

physical properties.  When a large variety of gratings are to be tested, 

each with a different size, shape, groove frequency, wavelength range, test 

geometry, etc., it is not practical to construct a dedicated instrument for 

each.  In this case, a more complex instrument is required.  In specifying 



 

233 

 

such an instrument, each source of error should be identified, and if 

possible, quantified.  An error budget can then be generated that will 

determine if the instrument is able to perform at the desired level.  Most 

likely it will not, and then a decision needs to be made regarding which 

features can be compromised, eliminated, or implemented on another 

instrument.  

 Disagreements often arise between measurements made of the same 

grating on different efficiency measuring instruments.  Slight differences 

in test geometry, bandpass, and beam size can have a surprisingly large 

effect on efficiency measurements.  What is sometimes difficult to 

understand is that it is possible for two instruments to measure the same 

grating and get different results that are valid!  

 Grating efficiency is largely determined by the groove properties of 

the master from which the grating was replicated, and to some degree the 

coating.  It is very rare for a master, regardless of the process used to 

create it, to have perfectly uniform efficiency at every spot along its 

surface.  In some cases, the efficiency may vary by several percent.  If a 

grating is measured using a small diameter beam, then these efficiency 

variations are very noticeable compared to measurements made using a 

larger beam.  If two different instruments are used to measure the same 

grating, it is possible that the beams are not the same size or, in the case 

of a small beam diameter, are not sampling the same spot on the grating 

surface.  Both instruments are correct in their measurements, but still do 

not agree.  For this reason, whenever comparisons between instruments 

are made, the differences in their configuration must be taken into 

consideration.   

 The goal of efficiency measurement is to characterize the grating 

under test, not the apparatus making the measurements.  For this reason, 

efficiency curves should report not only the relative or absolute efficiency 

vs. wavelength, but the properties of the instrument making the 

measurement as well.  Only then is it possible to reproduce the results 

obtained with any degree of accuracy.   
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APPENDIX B.  Lie aberration theory for 

grating systems 
 

 Besides the wavefront aberration theory described in Chapter 7, 

geometrical optics can be formulated in a manner in direct analogy with 

the Hamiltonian theory of classical dynamics.204  The basis for this 

analogy is the recognition that Fermat’s principle, which requires that a 

physical light path be an extremum, is equivalent to the requirement that 

this physical light path follow a trajectory governed by a Hamiltonian.  

The coordinates and momenta of a particle in classical mechanics 

therefore correspond to the coordinates and direction cosines of a light 

ray in optics, and the tools of classical mechanics can be applied directly 

to geometrical optics.   

 The characterization of optical systems using Lie transformations, 

hitherto applied to dynamical systems, was first developed by Dragt, who 

considered axially symmetric systems.205  Later this formulation was 

extended by Goto and Kurosaki to optical systems without axial 

symmetry (but with a plane of symmetry).206  

 Dragt considered the coordinates x and y of a point in the object 

plane, as well as their direction cosines p and q, as the object phase space 

variables and primed quantities (x, y, p and q) as their corresponding 

image phase space variables (see Figure B-1), and expressed the 

transformation of the ray in object space to the ray in image space (due to 

the optical system) as 

  W  = M w (B-1) 

where M is a mapping (or simply map), an operator that transforms 

coordinates in object space to corresponding coordinates in image space.   

 A transformation that maps coordinates in object space into 

coordinates in image space according to Fermat’s principle is called 

symplectic.  Dragt and Finn showed in 1976 that a symplectic map can be 

                                                             
204 A. J. Dragt, E. Forest and K. B. Wolf, “Foundations of a Lie algebraic theory of 
geometrical optics,” in Lie Methods in Optics, J. J. Sanchez-Mondragon and K. B. Wolf, 
eds. (Springer-Verlag, Berlin, 1984), ch. 4. 

205 A. J. Dragt, “Lie algebraic theory of geometric optics and optical aberrations,” J. Opt. 
Soc. Am. 72, 372-379 (1982). 

206 K. Goto and T. Kurosaki, “Canonical formulation for the geometrical optics of concave 
gratings,” J. Opt. Soc. Am. A10, 452-465 (1993). 
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expressed in terms of Lie transformations.207  More specifically, this map 

can be expressed as the product of Lie transformations, each of which is 

homogeneous in the object space coordinates (that is, all terms in each 

Lie transformation are of the same power in the independent variables).  

Furthermore, truncating the product at any power leaves a symplectic 

transformation, so lower-order imaging properties can be examined 

without considering the higher-order Lie transformations in the map.  

Goto and Kurosaki used Dragt’s formalism to derive, using Lie algebraic 

theory rather than wavefront aberration theory, equations that are 

formally identical to the aberration coefficients F20, F02, F30, etc. seen in 

Chapter 7. 

 

 

Figure B-1. Definition of the object space variables.  The optical ray in object space has 

coordinate (x, y) in the object plane and direction defined by angles  and  (shown), whose 

direction cosines are p and q.   

 The transformation from object phase space to image phase space 

may be represented as a sequence of operations; for example, for 

diffraction by a grating, these operations are (in sequence)  

1. transit from the object plane to the grating, through the distance 

r, 

2. rotation, through the angle , to a coordinate frame centered at 

the grating center and oriented with an axis along the grating 

normal, 

                                                             
207 A. J. Dragt and J. M. Finn, “Lie series and invariant functions for analytical symplectic 
maps,” J. Math. Phys. 17, 2215-2227 (1976). 
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3. diffraction in this coordinate frame,  

4. rotation through the angle , and 

5. transit from the grating to the image plane, through the distance 

r. 

 An advantage of the Lie transformation approach over the wavefront 

aberration technique is that general points (x, y) in the object plane are 

naturally considered; which this is also true of wavefront aberration 

theory, the algebra is cumbersome and, as a result, most authors consider 

only a point source in the dispersion plane.  

 Another immediate advantage of the Lie transformation approach is 

that systems with more than one optical element can be addressed in a 

computationally straightforward manner, simply by appending 

transformations (in the sequence in which the optical ray encounters the 

optical elements).208  Using wavefront aberration theory this is not 

straightforward, in large part because the grating surface coordinates 

appear explicitly in the optical path difference (see Eq. (7-5)).  Many 

researchers overcame this complication by imposing intermediate foci 

between successive elements,209 though Chrisp introduced the use of 

toroidal reference surfaces and provided an important advance in the 

development of wavefront aberration theory for multielement systems.210   

 As an example of the power of Lie algebraic techniques in the analysis 

of multielement optical system, below is the equation for defocus for a 

system of two aberration-reduced concave holographic gratings:211 

                                                             
208 C. Palmer, W. R. McKinney and B. Wheeler, "Imaging equations for spectroscopic 
systems using Lie transformations. Part I - Theoretical foundations," Proc. SPIE 3450, 55-
66 (1998). 

209 T. Namioka, H. Noda, K. Goto and T. Katayama, “Design studies of mirror-grating 
systems for use with an electron storage ring source at the Photon Factory,” Nucl. Inst. 
Meth. 208, 215-222 (1983). 

210 M. Chrisp, “The theory of holographic toroidal grating systems,” Ph. D. dissertation, U. 
London (1981); M. Chrisp, “Aberrations of holographic toroidal grating systems,” Appl. 
Opt. 22, 1508-1518 (1983). 

211 C. Palmer, B. Wheeler and W. R. McKinney, "Imaging equations for spectroscopic 
systems using Lie transformations. Part II - Multi-element systems," Proc. SPIE 3450, 67-
77 (1998). 
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Here the subscripts on the angles and distances refer to each grating, and 

we have defined  

  21 rrD   (B-3) 

as the distance between the two gratings.  The quantity ][
2
iA  depends on 

the substrate curvature and groove pattern for the ith grating. 
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aberration, 84 

aberration coefficient, 84 

aberration reduction, 90 

aberration-reduced concave grating, 

79 

Abney mount, 94 

absolute efficiency, 113 

add-drop routers, 200 

anamorphic magnification, 34 

angular deviation, 22, 98 

angular dispersion, 26 

anomalies, 115, 136 

astigmatism, 85 

astronomy, 192 

atomic spectroscopy, 185 

'B' engine, 40 

bandpass, 31 

beam splitters, 201 

blaze angle, 36 

blaze condition, 36 

blaze wavelength, 114 

blazing, 113 

'C' engine, 41 

camera, 70 

Carpenter prism. See grism 

classical diffraction, 22 

classical grating, 80 

collimator, 70 

colorimetry, 187 

coma, 88 

concave grating, 80 

conical diffraction, 22 

conservation of energy, 134 

constructive interference, 21 

cut-off filters, 168 

damage threshold, 66 

defocus, 85 

demultiplexer, 200 

deviation angle, 22, 98 

differential methods, 139 

diffraction, 19 

diffraction grating, 14 

diffraction limit, 102 

diffraction order, 21, 24 

diffuse scattered light, 142 

dispersion plane, 82 

dual-blaze grating, 67 

Eagle mount, 94 

echelles, 179 

efficiency, 35, 113 

efficiency curve, 114 

emission spectrum, 187 

energy density, 64 

energy distribution, 35 

esonant oscillations, 199 

excitation spectrum, 187 

ƒ/number, 32 

Fermat's principle, 82 

fiber-optic telecommunications, 

200 

finite conductivity, 126 

first generation holographic grating, 

49, 80 

first surface optic, 207 

first-order Littrow blaze 

wavelength, 37 

flat-field spectrograph, 55, 96 

fluorescence spectroscopy, 187 

focal length, 32 

focal ratio, 32 

Foucault knife-edge test, 161 

free spectral range, 35 

full width at half maximum 

intensity, 30 

general ray, 82 

grating cosmetics, 207 

grating effficiency, 35 

grating equation, 21 

grating normal, 81 

grating prism. See grism 

grating scatter, 37, 141 

grating specifications, 211 

grating tangent plane, 82 

gratings as filters, 197 
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grazing incidence, 179 

grism, 177 

groove density, 22 

groove frequency, 22 

groove pattern, 55, 79 

groove spacing, 19 

grooves per millimeter, 22 

half deviation angle, 23 

handling gratings, 209 

high vacuum, 64 

holographic grating, 45 

hyperspectral systems, 188 

imaging spectrographs, 98 

immersed grating, 183 

in-plane diffraction, 22 

in-plane scatter, 142 

instrumental analysis, 185 

instrumental bandpass, 111 

instrumental stray light, 141 

integral methods, 139 

interference grating. See 

holographic grating 

interorder scatter, 144, 166 

ion etching, 131 

IR spectroscopy, 185 

laser tuning, 189 

Lie transformations, 235 

limit of resolution, 28 

line curvature, 85 

linear dispersion, 27 

linespread function, 103 

Littrow blaze condition, 37 

Littrow configuration, 22 

Littrow monochromator, 73 

Lyman ghosts, 143, 158 

magnification, 34, 103 

Mann engine, 40 

master grating, 14 

merit function, 92 

metrological applications, 201 

Michelson engine, 39 

molecular spectroscopy, 185 

monochromator, 69 

mosaic grating, 193 

multiplexer, 200 

obliquity factor, 28 

optical couplers, 201 

optical spectrum analyzers, 201 

order sorting, 25 

overfilling, 146 

overlapping spectra, 25 

Paschen-Runge mount, 94 

peak wavelength, 114 

perfect grating, 145 

pitch, 19 

plane grating, 69 

plate factor. See reciprocal linear 

dispersion 

polarization, 115 

polarization conversion, 138 

pole ray, 82 

polychromator, 69 

principal plane, 82 

pulse stretching and compression, 

191 

R number, 182 

Raman spectroscopy, 188 

Rayleigh anomalies, 136 

Rayleigh criterion, 29 

reciprocal linear dispersion, 27 

reciprocity theorem, 134 

reflection grating, 14, 19 

relative efficiency, 113 

relative humidity, 63 

replica grating, 14, 57 

replication tree, 59 

resolving power, 28 

resolving power vs. resolution, 31 

resonance anomalies, 136 

Rowland ghosts, 143, 155 

ruled gratings, 39 

ruling engine, 39 

ruling process, 42 

S plane, 115 

sagittal curvature, 81 

sagittal focal distance, 86 

sagittal magnification, 103 

sagittal plane, 82 

sagittal radius, 81 

satellites, 159 
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scalar efficiency theories, 139 

scattered light, 37, 141 

second generation holographic 

grating, 50, 80 

Seya-Namioka monochromator, 98 

Sheridon grating, 48 

signal-to-noise ratio, 38, 170 

slit function, 170 

SNR. See signal-to-noise ratio 

spectral bandpass, 31 

spectral order, 21 

spectral resolution, 31 

spectrograph, 69 

spectrometer, 69 

spectroscopy, 13 

specular reflection, 22 

spot diagram, 101 

stigmatic image, 84 

stray light, 37, 141 

stray radiant energy, 141 

submaster, 57 

substrate curvature, 79 

substrate figure, 79 

subtractive dispersion, 74 

surface plasma wave, 137, 199 

surface plasmon polariton, 199 

synchrotron radiation, 197 

tangential curvature, 81 

tangential focal distance, 86 

tangential magnification, 103 

tangential plane, 82 

target pattern, 204 

temperature, 63 

threshold anomalies, 136 

TM plane, 115 

transfer coating, 58 

transmission grating, 19, 174 

triple monochromator, 75 

tunable filter, 198 

UV spectroscopy, 185 

varied line-space grating, 44, 80 

vector efficiency theories, 139 

visbile spectroscopy, 185 

VLS grating. See varied line-space 

grating 

Wadsworth mount, 87, 96 

wavefront testing, 161 

wavenumbers, 181 

zero order, 22, 24 

 


