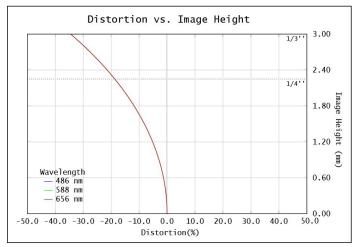
TECHSPEC® BLUE SERIES M12 IMAGING LENSES #89-343 • 3mm • f/8.0

TECHSPEC[®] Blue Series M12 Imaging Lenses feature high resolution performance, along with the same great versatility of our TECHSPEC[®] Green Series M12 Imaging Lenses. Each lens consists of several precision glass elements mounted in a compact, aluminum housing. TECHSPEC[®] Blue Series M12 Imaging Lenses are ideal for automotive, industrial, and medical imaging application.


Focal Length:	3mm				
Working Distance ¹ :	100mm - ∞				
Max. Sensor Format:	1/3"				
Camera Mount:	M12 x 0.5 (S-Mount)				
Aperture (f/#):	f/8.0				
Distortion %2:	<33.98%				
Object Space NA ² :	0.001789				

Magnification Range:	0 - 0.029X				
Туре:	Micro-Video Lens				
Length:	17.1mm				
Weight:	5g				
RoHS:	Compliant				
Number of Elements (Groups):	6 (5)				
AR Coating:	400-700nm MgF ₂				

1. From front housing 2. At Minimum W.D.

		At Minimum W.D. (100mm)									
Sensor Size 1/4"	1/3"	1/2.5"	1/2"	1/1.8"	2/3"	1"	28.7mm	4/3"			
Field Of View ³ 141.3mm - 68.6	° 211.1mm - 91.3°	N/A	N/A	N/A	N/A	N/A	N/A	N/A			

3. Horizontal FOV on Standard (4:3) sensor format. Min W.D.

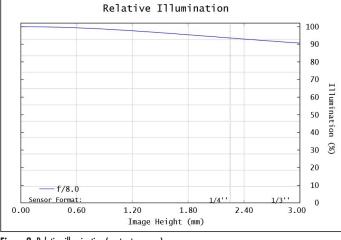
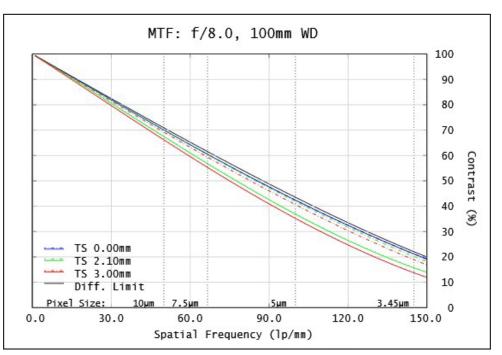
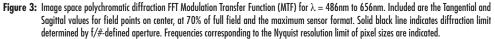


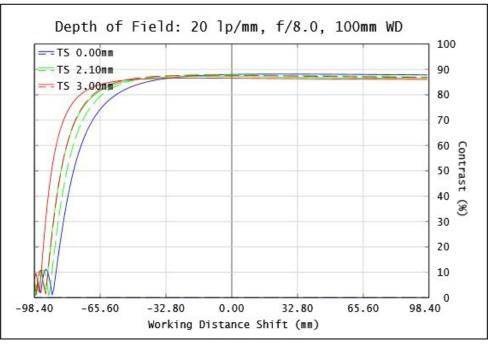
Figure 1: Distortion at the maximum sensor format. Positive values correspond to pincushion distortion, negative values correspond to barrel distortion.

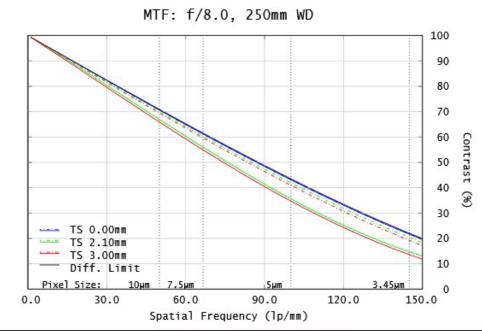

Figure 2: Relative illumination (center to corner)

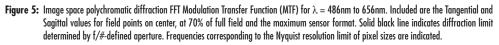

In both plots, field points corresponding to the image circle of common sensor formats are included. Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

www.edmundoptics.com | +1-856-547-3488 101 East Gloucester Pike, Barrington, NJ 08007

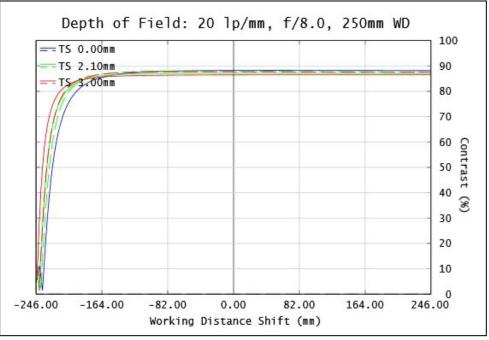
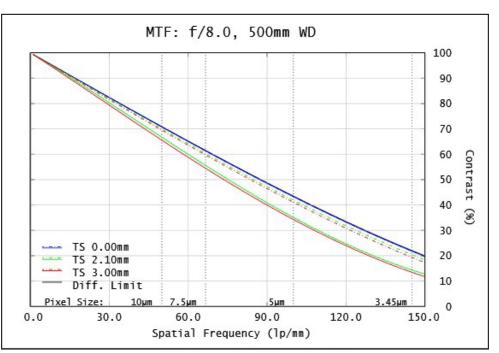
MTF & DOF: f/8.0 WD: 100mm (Minimum W.D.) HORIZONTAL FOV: 211mm

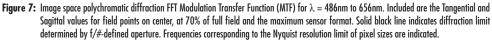



Figure 4: Polychromatic diffraction through-focus MTF at 20 linepairs/mm (image space). Contrast is plotted to two times the focus distance. Note object spatial frequency changes with working distance.


Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

MTF & DOF: f/8.0 WD: 250mm HORIZONTAL FOV: 518mm


Figure 6: Polychromatic diffraction through-focus MTF at 20 linepairs/mm (image space). Contrast is plotted to two times the focus distance. Note object spatial frequency changes with working distance.

Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

MTF & DOF: f/8.0 WD: 500mm HORIZONTAL FOV: 1030mm

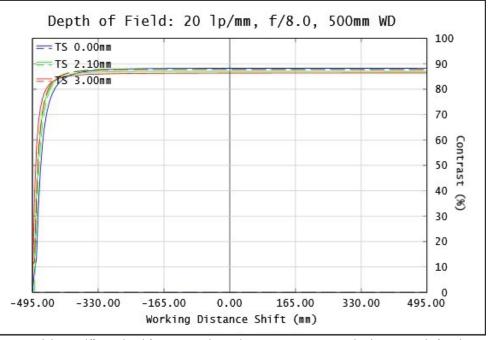


Figure 8: Polychromatic diffraction through-focus MTF at 20 linepairs/mm (image space). Contrast is plotted to two times the focus distance. Note object spatial frequency changes with working distance.

Plots represent theoretical values from lens design software. Actual lens performance varies due to manufacturing tolerances.

